We produce closed nontrivial invariant subspaces for closed (possibly unbounded) linear operators, A, on a Banach space, that may be embedded between decomposable operators on spaces with weaker and stronger topologies. We show that this can be done under many conditions on orbits, including when both A and A* have nontrivial non-quasi-analytic complete trajectories, and when both A and A* generate bounded semigroups that are not stable.
@article{bwmeta1.element.bwnjournal-article-smv119i1p65bwm, author = {Ralph deLaubenfels and Ph\'ong V\~u}, title = {Decomposable embeddings, complete trajectories, and invariant subspaces}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {65-76}, zbl = {0861.47004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i1p65bwm} }
deLaubenfels, Ralph; Vũ, Phóng. Decomposable embeddings, complete trajectories, and invariant subspaces. Studia Mathematica, Tome 119 (1996) pp. 65-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i1p65bwm/
[00000] [A] A. Atzmon, On the existence of hyperinvariant subspaces, J. Operator Theory 11 (1984), 3-40. | Zbl 0583.47009
[00001] [B] B. Beauzamy, Sous-espaces invariants de type fonctionnel, Acta Math. 144 (1980), 65-82. | Zbl 0438.47005
[00002] [vC] J. A. van Casteren, Generators of Strongly Continuous Semigroups, Res. Notes Math. 115, Pitman, Boston, 1985. | Zbl 0576.47023
[00003] [Co-F] I. Colojoăra and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
[00004] [Da] E. B. Davies, One-Parameter Semigroups, London Math. Soc. Monographs 15, Academic Press, 1980. | Zbl 0457.47030
[00005] [dL] R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Math. 1570, Springer, 1994. | Zbl 0811.47034
[00006] [dL-Ka] R. deLaubenfels and S. Kantorovitz, Laplace and Laplace-Stieltjes spaces, J. Funct. Anal. 116 (1993), 1-61. | Zbl 0795.47026
[00007] [Du-S] N. Dunford and J. T. Schwartz, Linear Operators, Part III, Interscience, New York, 1971.
[00008] [E-W] I. Erdelyi and S. Wang, A Local Spectral Theory for Closed Operators, London Math. Soc. Lecture Note Ser. 105, Cambridge Univ. Press, 1985. | Zbl 0577.47035
[00009] [G] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, New York, 1985. | Zbl 0592.47034
[00010] [H] S. Huang, Characterizing spectra of closed operators through existence of slowly growing solutions of their Cauchy problems, Studia Math. 116 (1995), 23-41. | Zbl 0862.45014
[00011] [Ka] S. Kantorovitz, The Hille-Yosida space of an arbitrary operator, J. Math. Anal. Appl. 136 (1988), 107-111. | Zbl 0675.47033
[00012] [Kr-Lap-Cv] S. G. Krein, G. I. Laptev and G. A. Cvetkova, On Hadamard correctness of the Cauchy problem for the equation of evolution, Soviet Math. Dokl. 11 (1970), 763-766.
[00013] [Lan-W] R. Lange and S. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, Amer. Math. Soc., Providence, 1992. | Zbl 0765.47009
[00014] [Lau-Ne] K. B. Laursen and M. M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czechoslovak Math. J. 43 (1993), 483-497. | Zbl 0806.47001
[00015] [Lyu-Mat] Yu. I. Lyubich and V. I. Matsaev, On operators with separable spectrum, Math. USSR-Sb. 56 (1962), 433-468.
[00016] [Mar] E. Marschall, On the functional calculus of non-quasianalytic groups of operators and cosine functions, Rend. Circ. Mat. Palermo 35 (1986), 58-81. | Zbl 0656.47032
[00017] [Na] R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, 1986. | Zbl 0585.47030
[00018] [Ne] M. M. Neumann, Local spectral theory for operators on Banach spaces and applications to convolution operators on group algebras, in: Louisiana State Univ. Seminar Notes in Funct. Anal. and PDEs, 1993-94, 287-308.
[00019] [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. | Zbl 0516.47023
[00020] [Va] F. H. Vasilescu, Analytic Functional Calculus and Spectral Decompositions, D. Reidel, Bucharest-Dordrecht, 1982.
[00021] [Vũ1] Vũ Quôc Phóng, On the spectrum, complete trajectories, and asymptotic stability of linear semi-dynamical systems, J. Differential Equations 105 (1993), 30-45.
[00022] [Vũ2] Vũ Quôc Phóng, Semigroups with nonquasianalytic growth, Studia Math. 104 (1993), 229-241.