Local Toeplitz operators based on wavelets: phase space patterns for rough wavelets
Nowak, Krzysztof
Studia Mathematica, Tome 119 (1996), p. 37-64 / Harvested from The Polish Digital Mathematics Library

We consider two standard group representations: one acting on functions by translations and dilations, the other by translations and modulations, and we study local Toeplitz operators based on them. Local Toeplitz operators are the averages of projection-valued functions gPg,ϕ, where for a fixed function ϕ, Pg,ϕ denotes the one-dimensional orthogonal projection on the function Ugϕ, U is a group representation and g is an element of the group. They are defined as integrals ʃWPg,ϕdg, where W is an open, relatively compact subset of a group. Our main result is a characterization of function spaces corresponding to local Toeplitz operators with pth power summable eigenvalues, 0 < p ≤ ∞.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216285
@article{bwmeta1.element.bwnjournal-article-smv119i1p37bwm,
     author = {Krzysztof Nowak},
     title = {Local Toeplitz operators based on wavelets: phase space patterns for rough wavelets},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {37-64},
     zbl = {0864.47012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i1p37bwm}
}
Nowak, Krzysztof. Local Toeplitz operators based on wavelets: phase space patterns for rough wavelets. Studia Mathematica, Tome 119 (1996) pp. 37-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i1p37bwm/

[00000] [D] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 6, SIAM, Philadelphia, 1992.

[00001] [F1] H. G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications, in: Lecture Notes in Pure and Appl. Math. 136, K. Jarosz (ed.), Dekker, New York, 1992, 123-137.

[00002] [F2] H. G. Feichtinger, Generalized amalgams with applications to Fourier transform, Canad. J. Math. 42 (1990), 395-409.

[00003] [FG] H. G. Feichtinger and K. Gröchenig, Gabor wavelets and the Heisenberg group, in: Wavelets - A Tutorial in Theory and Applications, C. K. Chui (ed.), Academic Press, Boston, 1992, 359-397. | Zbl 0849.43003

[00004] [Fo] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, N.J., 1989.

[00005] [FJW] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Providence, R.I., 1991.

[00006] [JP] S. Janson and J. Peetre, Paracommutators - boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504. | Zbl 0644.47046

[00007] [N1] K. Nowak, On Calderón-Toeplitz operators, Monatsh. Math. 116 (1993), 49-72. | Zbl 0795.47016

[00008] [N2] K. Nowak, Some eigenvalue estimates for wavelet related Toeplitz operators, Colloq. Math. 65 (1993), 149-156. | Zbl 0836.47019

[00009] [N3] K. Nowak, Singular value estimates for certain convolution-product operators, J. Fourier Anal. Appl. 1 (3) (1995), 297-310. | Zbl 0894.45002

[00010] [Pe] L. Peng, Paracommutators of Schatten-von Neumann class Sp, 0 < p < 1, Math. Scand. 61 (1987), 68-92.

[00011] [PRW] L. Peng, R. Rochberg and Z. Wu, Orthogonal polynomials and middle Hankel operators, Studia Math. 102 (1992), 57-75. | Zbl 0809.30008

[00012] [R1] R. Rochberg, Toeplitz and Hankel operators, wavelets, NWO sequences, and almost diagonalization of operators, in: Proc. Sympos. Pure Math. 51, W. B. Arveson and R. G. Douglas (eds.), Amer. Math. Soc., Providence, 1990, 425-444.

[00013] [R2] R. Rochberg, A correspondence principle for Toeplitz and Calderón-Toeplitz operators, in: Israel Math. Conf. Proc. 5, M. Cwikel et al. (eds.), Bar-Ilan Univ., Ramat Gan, 1992, 229-243. | Zbl 0865.47016

[00014] [R3] R. Rochberg, Eigenvalue estimates for Calderón-Toeplitz operators, in: Lecture Notes in Pure and Appl. Math. 136, K. Jarosz (ed.), Dekker, New York, 1992, 345-357.

[00015] [R4] R. Rochberg, The use of decomposition theorems in the study of operators, in: Wavelets: Mathematics and Applications, J. J. Benedetto and M. Frazier (eds.), CRC Press, Boca Raton, 1994, 547-570. | Zbl 0901.47016

[00016] [S] B. Simon, Trace Ideals and Their Applications, Cambridge Univ. Press, London, 1979. | Zbl 0423.47001

[00017] [Sl] D. Slepian, Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev. 25 (1983), 379-393. | Zbl 0571.94004

[00018] [Z] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990. | Zbl 0706.47019