An example of a nonzero quasinilpotent operator with reflexive commutant is presented.
@article{bwmeta1.element.bwnjournal-article-smv118i3p277bwm,
author = {M. Zaj\k ac},
title = {A quasinilpotent operator with reflexive commutant},
journal = {Studia Mathematica},
volume = {119},
year = {1996},
pages = {277-283},
zbl = {0852.47002},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p277bwm}
}
Zając, M. A quasinilpotent operator with reflexive commutant. Studia Mathematica, Tome 119 (1996) pp. 277-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p277bwm/
[00000] [1] Š. Drahovský and M. Zajac, Hyperinvariant subspaces of operators on Hilbert spaces, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 117-126. | Zbl 1052.47503
[00001] [2] D. Hadwin and E. A. Nordgren, Reflexivity and direct sums, Acta Sci. Math. (Szeged) 55 (1991), 181-197. | Zbl 0780.47032
[00002] [3] D. A. Herrero, A dense set of operators with tiny commutants, Trans. Amer. Math. Soc. 327 (1991), 159-183. | Zbl 0675.41050
[00003] [4] W. R. Wogen, On cyclicity of commutants, Integral Equations Operator Theory 5 (1982), 141-143. | Zbl 0473.47005