A quasinilpotent operator with reflexive commutant
Zając, M.
Studia Mathematica, Tome 119 (1996), p. 277-283 / Harvested from The Polish Digital Mathematics Library

An example of a nonzero quasinilpotent operator with reflexive commutant is presented.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216278
@article{bwmeta1.element.bwnjournal-article-smv118i3p277bwm,
     author = {M. Zaj\k ac},
     title = {A quasinilpotent operator with reflexive commutant},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {277-283},
     zbl = {0852.47002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p277bwm}
}
Zając, M. A quasinilpotent operator with reflexive commutant. Studia Mathematica, Tome 119 (1996) pp. 277-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p277bwm/

[00000] [1] Š. Drahovský and M. Zajac, Hyperinvariant subspaces of operators on Hilbert spaces, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 117-126. | Zbl 1052.47503

[00001] [2] D. Hadwin and E. A. Nordgren, Reflexivity and direct sums, Acta Sci. Math. (Szeged) 55 (1991), 181-197. | Zbl 0780.47032

[00002] [3] D. A. Herrero, A dense set of operators with tiny commutants, Trans. Amer. Math. Soc. 327 (1991), 159-183. | Zbl 0675.41050

[00003] [4] W. R. Wogen, On cyclicity of commutants, Integral Equations Operator Theory 5 (1982), 141-143. | Zbl 0473.47005