It is shown that under certain conditions on , the rectangular partial sums converge uniformly on . These conditions include conditions of bounded variation of order (1,0), (0,1), and (1,1) with the weights |j|, |k|, |jk|, respectively. The convergence rate is also established. Corresponding to the mentioned conditions, an analogous condition for single trigonometric series is (as n → ∞). For O-regularly varying quasimonotone sequences, we prove that it is equivalent to the condition: as n → ∞. As a consequence, our result generalizes those of Chaundy-Jolliffe [CJ], Jolliffe [J], Nurcombe [N], and Xie-Zhou [XZ].
@article{bwmeta1.element.bwnjournal-article-smv118i3p245bwm, author = {Chang-Pao Chen and Gwo-Bin Chen}, title = {Uniform convergence of double trigonometric series}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {245-259}, zbl = {0849.42008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p245bwm} }
Chen, Chang-Pao; Chen, Gwo-Bin. Uniform convergence of double trigonometric series. Studia Mathematica, Tome 119 (1996) pp. 245-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p245bwm/
[00000] [CJ] T. W. Chaundy and A. E. Jolliffe, The uniform convergence of a certain class of trigonometric series, Proc. London Math. Soc. (2) 15 (1916), 214-216.
[00001] [C1] C.-P. Chen, Weighted integrability and -convergence of multiple trigonometric series, Studia Math. 108 (1994), 177-190. | Zbl 0821.42007
[00002] [C2] C.-P. Chen, Integrability of multiple trigonometric series and Parseval's formula, J. Math. Anal. Appl. 186 (1994), 182-199. | Zbl 0807.42007
[00003] [CL] C.-P. Chen and C.-C. Lin, Integrability, mean convergence, and Parseval's formula for double trigonometric series, preprint. | Zbl 0907.42009
[00004] [D] M. I. Dyachenko, The rate of u-convergence of multiple Fourier series, Acta Math. Hungar. 68 (1995), 55-70. | Zbl 0828.42007
[00005] [J] A. E. Jolliffe, On certain trigonometric series which have a necessary and sufficient condition for uniform convergence, Math. Proc. Cambridge Philos. Soc. 19 (1921), 191-195.
[00006] [K] J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38-53. | Zbl 56.0907.01
[00007] [M1] F. Móricz, Convergence and integrability of double trigonometric series with coefficients of bounded variation, Proc. Amer. Math. Soc. 102 (1988), 633-640. | Zbl 0666.42004
[00008] [M2] F. Móricz, On the integrability and -convergence of double trigonometric series, Studia Math. 98 (1991), 203-225. | Zbl 0724.42015
[00009] [M3] F. Móricz, On the integrability of double cosine and sine series I, J. Math. Anal. Appl. 154 (1991), 452-465. | Zbl 0724.42013
[00010] [N] J. R. Nurcombe, On the uniform convergence of sine series with quasimonotone coefficients, ibid. 166 (1992), 577-581. | Zbl 0756.42006
[00011] [S] O. Szász, Quasi-monotone series, Amer. J. Math. 70 (1948), 203-206. | Zbl 0035.03901
[00012] [XZ] T. F. Xie and S. P. Zhou, The uniform convergence of certain trigonometric series, J. Math. Anal. Appl. 181 (1994), 171-180. | Zbl 0791.42004
[00013] [Z] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, 1968. | Zbl 0157.38204