Uniform convergence of double trigonometric series
Chen, Chang-Pao ; Chen, Gwo-Bin
Studia Mathematica, Tome 119 (1996), p. 245-259 / Harvested from The Polish Digital Mathematics Library

It is shown that under certain conditions on cjk, the rectangular partial sums smn(x,y) converge uniformly on T2. These conditions include conditions of bounded variation of order (1,0), (0,1), and (1,1) with the weights |j|, |k|, |jk|, respectively. The convergence rate is also established. Corresponding to the mentioned conditions, an analogous condition for single trigonometric series is |k|=n|Δck|=o(1/n) (as n → ∞). For O-regularly varying quasimonotone sequences, we prove that it is equivalent to the condition: ncn=o(1) as n → ∞. As a consequence, our result generalizes those of Chaundy-Jolliffe [CJ], Jolliffe [J], Nurcombe [N], and Xie-Zhou [XZ].

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216276
@article{bwmeta1.element.bwnjournal-article-smv118i3p245bwm,
     author = {Chang-Pao Chen and Gwo-Bin Chen},
     title = {Uniform convergence of double trigonometric series},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {245-259},
     zbl = {0849.42008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p245bwm}
}
Chen, Chang-Pao; Chen, Gwo-Bin. Uniform convergence of double trigonometric series. Studia Mathematica, Tome 119 (1996) pp. 245-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p245bwm/

[00000] [CJ] T. W. Chaundy and A. E. Jolliffe, The uniform convergence of a certain class of trigonometric series, Proc. London Math. Soc. (2) 15 (1916), 214-216.

[00001] [C1] C.-P. Chen, Weighted integrability and L1-convergence of multiple trigonometric series, Studia Math. 108 (1994), 177-190. | Zbl 0821.42007

[00002] [C2] C.-P. Chen, Integrability of multiple trigonometric series and Parseval's formula, J. Math. Anal. Appl. 186 (1994), 182-199. | Zbl 0807.42007

[00003] [CL] C.-P. Chen and C.-C. Lin, Integrability, mean convergence, and Parseval's formula for double trigonometric series, preprint. | Zbl 0907.42009

[00004] [D] M. I. Dyachenko, The rate of u-convergence of multiple Fourier series, Acta Math. Hungar. 68 (1995), 55-70. | Zbl 0828.42007

[00005] [J] A. E. Jolliffe, On certain trigonometric series which have a necessary and sufficient condition for uniform convergence, Math. Proc. Cambridge Philos. Soc. 19 (1921), 191-195.

[00006] [K] J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38-53. | Zbl 56.0907.01

[00007] [M1] F. Móricz, Convergence and integrability of double trigonometric series with coefficients of bounded variation, Proc. Amer. Math. Soc. 102 (1988), 633-640. | Zbl 0666.42004

[00008] [M2] F. Móricz, On the integrability and L1-convergence of double trigonometric series, Studia Math. 98 (1991), 203-225. | Zbl 0724.42015

[00009] [M3] F. Móricz, On the integrability of double cosine and sine series I, J. Math. Anal. Appl. 154 (1991), 452-465. | Zbl 0724.42013

[00010] [N] J. R. Nurcombe, On the uniform convergence of sine series with quasimonotone coefficients, ibid. 166 (1992), 577-581. | Zbl 0756.42006

[00011] [S] O. Szász, Quasi-monotone series, Amer. J. Math. 70 (1948), 203-206. | Zbl 0035.03901

[00012] [XZ] T. F. Xie and S. P. Zhou, The uniform convergence of certain trigonometric series, J. Math. Anal. Appl. 181 (1994), 171-180. | Zbl 0791.42004

[00013] [Z] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, 1968. | Zbl 0157.38204