A characterization of probability measures by f-moments
Urbanik, K.
Studia Mathematica, Tome 119 (1996), p. 185-204 / Harvested from The Polish Digital Mathematics Library

Given a real-valued continuous function ƒ on the half-line [0,∞) we denote by P*(ƒ) the set of all probability measures μ on [0,∞) with finite ƒ-moments ʃ0ƒ(x)μ*n(dx) (n = 1,2...). A function ƒ is said to have the identification propertyif probability measures from P*(ƒ) are uniquely determined by their ƒ-moments. A function ƒ is said to be a Bernstein function if it is infinitely differentiable on the open half-line (0,∞) and (-1)nƒ(n+1)(x) is completely monotone for some nonnegative integer n. The purpose of this paper is to give a necessary and sufficient condition in terms of the representing measures for Bernstein functions to have the identification property.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216273
@article{bwmeta1.element.bwnjournal-article-smv118i2p185bwm,
     author = {K. Urbanik},
     title = {A characterization of probability measures by f-moments},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {185-204},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p185bwm}
}
Urbanik, K. A characterization of probability measures by f-moments. Studia Mathematica, Tome 119 (1996) pp. 185-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p185bwm/

[00000] [1] M. Braverman, A characterization of probability distributions by moments of sums of independent random variables, J. Theoret. Probab. 7 (1994), 187-198.

[00001] [2] M. Braverman, C. L. Mallows and L. A. Shepp, A characterization of probability distributions by absolute moments of partial sums, Teor. Veroyatnost. i Primenen. 40 (1995), 270-285 (in Russian).

[00002] [3] W. Feller, On Müntz' theorem and completely monotone functions, Amer. Math. Monthly 75 (1968), 342-350.

[00003] [4] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.

[00004] [5] S. Kaczmarz und H. Steinhaus, Theorie der Orthogonalreihen, Monograf. Mat. 6, Warszawa-Lwów, 1935.

[00005] [6] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, Van Nostrand, Toronto, 1953.

[00006] [7] C. Müntz, Über den Approximationssatz von Weierstrass, in: Schwarz Festschrift, Berlin, 1914, 303-312.

[00007] [8] M. Neupokoeva, On the reconstruction of distributions by the moments of the sums of independent random variables, in: Stability Problems for Stochastic Models, Proceedings, VNIISI, Moscow, 1989, 11-17 (in Russian).

[00008] [9] R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., New York, 1934.

[00009] [10] O. Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann. 77 (1916), 482-496.

[00010] [11] K. Urbanik, Moments of sums of independent random variables, in: Stochastic Processes (Kallianpur Festschrift), Springer, New York, 1993, 321-328.