The inequality (*) (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from converges a.e. and also in norm to that function.
@article{bwmeta1.element.bwnjournal-article-smv118i2p175bwm, author = {Ferenc Weisz}, title = {Two-parameter Hardy-Littlewood inequalities}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {175-184}, zbl = {0864.42003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p175bwm} }
Weisz, Ferenc. Two-parameter Hardy-Littlewood inequalities. Studia Mathematica, Tome 119 (1996) pp. 175-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p175bwm/
[00000] [1] S. -Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and -theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. | Zbl 0557.42007
[00001] [2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[00002] [3] M. I. D'jachenko [M. I. D'yachenko], Multiple trigonometric series with lexicographically monotone coefficients, Anal. Math. 16 (1990), 173-190.
[00003] [4] M. I. D'jachenko [M. I. D'yachenko], On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR-Sb. 57 (1987), 57-75.
[00004] [5] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
[00005] [6] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-194. | Zbl 0257.46078
[00006] [7] C. Fefferman and E. M. Stein, Calderón-Zygmund theory for product domains: spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843. | Zbl 0602.42023
[00007] [8] R. F. Gundy, Inégalités pour martingales à un et deux indices: L’espace , in: Ecole d’Eté de Probabilités de Saint-Flour VIII-1978, Lecture Notes in Math. 774, Springer, Berlin, 1980, 251-331.
[00008] [9] R. F. Gundy, Maximal function characterization of for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58.
[00009] [10] R. F. Gundy and E. M. Stein, theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029. | Zbl 0405.32002
[00010] [11] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9. | Zbl 0001.13504
[00011] [12] B. Jawerth and A. Torchinsky, A note on real interpolation of Hardy spaces in the polydisk, Proc. Amer. Math. Soc. 96 (1986), 227-232. | Zbl 0606.42017
[00012] [13] K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96. | Zbl 0626.46060
[00013] [14] F. Móricz, On double cosine, sine and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425. | Zbl 0741.42010
[00014] [15] F. Móricz, On the maximum of the rectangular partial sums of double trigonometric series with non-negative coefficients, Anal. Math. 15 (1989), 283-290. | Zbl 0756.42010
[00015] [16] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. | Zbl 0621.42001
[00016] [17] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. | Zbl 0728.60046
[00017] [18] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. | Zbl 0796.60049
[00018] [19] F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Studia Math. 117 (1996), 173-194. | Zbl 0839.42009
[00019] [20] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. | Zbl 0085.05601