Two-parameter Hardy-Littlewood inequalities
Weisz, Ferenc
Studia Mathematica, Tome 119 (1996), p. 175-184 / Harvested from The Polish Digital Mathematics Library

The inequality (*) (|n|=1|m|=1|nm|p-2|f̂(n,m)|p)1/pCpƒHp (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space Hp on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in Lp whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from H1 converges a.e. and also in L1 norm to that function.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216272
@article{bwmeta1.element.bwnjournal-article-smv118i2p175bwm,
     author = {Ferenc Weisz},
     title = {Two-parameter Hardy-Littlewood inequalities},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {175-184},
     zbl = {0864.42003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p175bwm}
}
Weisz, Ferenc. Two-parameter Hardy-Littlewood inequalities. Studia Mathematica, Tome 119 (1996) pp. 175-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p175bwm/

[00000] [1] S. -Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and Hp-theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. | Zbl 0557.42007

[00001] [2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023

[00002] [3] M. I. D'jachenko [M. I. D'yachenko], Multiple trigonometric series with lexicographically monotone coefficients, Anal. Math. 16 (1990), 173-190.

[00003] [4] M. I. D'jachenko [M. I. D'yachenko], On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR-Sb. 57 (1987), 57-75.

[00004] [5] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.

[00005] [6] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-194. | Zbl 0257.46078

[00006] [7] C. Fefferman and E. M. Stein, Calderón-Zygmund theory for product domains: Hp spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843. | Zbl 0602.42023

[00007] [8] R. F. Gundy, Inégalités pour martingales à un et deux indices: L’espace Hp, in: Ecole d’Eté de Probabilités de Saint-Flour VIII-1978, Lecture Notes in Math. 774, Springer, Berlin, 1980, 251-331.

[00008] [9] R. F. Gundy, Maximal function characterization of Hp for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58.

[00009] [10] R. F. Gundy and E. M. Stein, Hp theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029. | Zbl 0405.32002

[00010] [11] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9. | Zbl 0001.13504

[00011] [12] B. Jawerth and A. Torchinsky, A note on real interpolation of Hardy spaces in the polydisk, Proc. Amer. Math. Soc. 96 (1986), 227-232. | Zbl 0606.42017

[00012] [13] K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96. | Zbl 0626.46060

[00013] [14] F. Móricz, On double cosine, sine and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425. | Zbl 0741.42010

[00014] [15] F. Móricz, On the maximum of the rectangular partial sums of double trigonometric series with non-negative coefficients, Anal. Math. 15 (1989), 283-290. | Zbl 0756.42010

[00015] [16] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. | Zbl 0621.42001

[00016] [17] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. | Zbl 0728.60046

[00017] [18] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. | Zbl 0796.60049

[00018] [19] F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Studia Math. 117 (1996), 173-194. | Zbl 0839.42009

[00019] [20] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. | Zbl 0085.05601