We prove that for λ ∈ [0,1] and A, B two Borel sets in with A convex, , where is the canonical gaussian measure in and is the inverse of the gaussian distribution function.
@article{bwmeta1.element.bwnjournal-article-smv118i2p169bwm, author = {Rafa\l\ Lata\l a}, title = {A note on the Ehrhard inequality}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {169-174}, zbl = {0847.60012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p169bwm} }
Latała, Rafał. A note on the Ehrhard inequality. Studia Mathematica, Tome 119 (1996) pp. 169-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p169bwm/
[00000] [1] A. Ehrhard, Symétrisation dans l'espace de Gauss, Math. Scand. 53 (1983), 281-301. | Zbl 0542.60003
[00001] [2] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991.