Let be a linear Brownian motion and (L(t,x), t > 0, x ∈ ℝ) its local time. We prove that for all t > 0, the process (L(t,x), x ∈ [0,1]) belongs almost surely to the Besov-Orlicz space with .
@article{bwmeta1.element.bwnjournal-article-smv118i2p145bwm, author = {B. Boufoussi}, title = {R\'egularit\'e du temps local brownien dans les espaces de Besov-Orlicz}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {145-156}, zbl = {0856.60077}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p145bwm} }
Boufoussi, B. Régularité du temps local brownien dans les espaces de Besov-Orlicz. Studia Mathematica, Tome 119 (1996) pp. 145-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p145bwm/
[00000] [BY] M. T. Barlow and M. Yor, Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times, J. Funct. Anal. 49 (1982), 198-229. | Zbl 0505.60054
[00001] [Be1] S. M. Berman, Sojourns and Extremes of Stochastic Processes, Wadsworth & Brooks/Cole, Pacific Grove, 1992.
[00002] [Be2] S. M. Berman, Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), 277-299. | Zbl 0184.40801
[00003] [Bo] A. N. Borodin, Distribution of integral functionals of Brownian motion, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 119 (1982), 19-38 (in Russian). | Zbl 0491.60082
[00004] [BR] B. Boufoussi et B. Roynette, Le temps local brownien appartient p.s. à l’espace de Besov , C. R. Acad. Sci. Paris Sér. I 316 (1993), 843-848. | Zbl 0788.46035
[00005] [C1] Z. Ciesielski, On the isomorphisms of the spaces and m, Bull. Acad. Polon. Sci. 8 (1960), 217-222.
[00006] [C2] Z. Ciesielski, Orlicz spaces, spline systems, and Brownian motion, Constr. Approx. 9 (1993), 191-222. | Zbl 0814.46022
[00007] [CKR] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204.
[00008] [K1] F. B. Knight, Random walks and a sojourn density process of Brownian motion, Trans. Amer. Math. Soc. 109 (1963), 56-86. | Zbl 0119.14604
[00009] [K2] F. B. Knight, Essentials of Brownian Motion and Diffusion, Math. Surveys 18, Amer. Math. Soc., Providence, 1981.
[00010] [KR] M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
[00011] [L] P. Lévy, Le Mouvement Brownien, Mém. Sci. Math. 126, Gauthier-Villars, Paris, 1954.
[00012] [Lu] W. A. J. Luxemburg, Banach function spaces, Thesis, Technische Hogeschool te Delft, 1955; MR 17 (1956), 285.
[00013] [M] H. P. McKean, A Hölder condition for Brownian local time, J. Math. Kyoto Univ. 1 (1962), 195-201. | Zbl 0121.13101
[00014] [P] E. Perkins, Local time is a semi-martingale, Z. Warsch. Verw. Gebiete 60 (1982), 79-117. | Zbl 0468.60070
[00015] [Ra] D. B. Ray, Sojourn times of diffusion processes, Illinois J. Math. 7 (1963), 615-630. | Zbl 0118.13403
[00016] [RY] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 1991. | Zbl 0731.60002
[00017] [Ro] B. Roynette, Mouvement brownien et espaces de Besov, Stochastics Stochastics Rep. 43 (1993), 221-260.
[00018] [T] H. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), 425-433. | Zbl 0117.35502
[00019] [W] N. Wiener, Generalized harmonic analysis, Acta Math. 55 (130), 117-258. | Zbl 56.0954.02