Comparing gaussian and Rademacher cotype for operators on the space of continuous functions
Junge, Marius
Studia Mathematica, Tome 119 (1996), p. 101-115 / Harvested from The Polish Digital Mathematics Library

We prove an abstract comparison principle which translates gaussian cotype into Rademacher cotype conditions and vice versa. More precisely, let 2 < q < ∞ and T: C(K) → F a continuous linear operator. (1) T is of gaussian cotype q if and only if (k((TxkF)/(log(k+1)))q)1/qckɛkxkL2(C(K)), for all sequences (xk)kC(K) with (Txk)k=1n decreasing. (2) T is of Rademacher cotype q if and only if (k(TxkF((log(k+1))q))1/qckgkxkL2(C(K)), for all sequences (xk)kC(K) with (Txk)k=1n decreasing. Our method allows a restriction to a fixed number of vectors and complements the corresponding results of Talagrand.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216266
@article{bwmeta1.element.bwnjournal-article-smv118i2p101bwm,
     author = {Marius Junge},
     title = {Comparing gaussian and Rademacher cotype for operators on the space of continuous functions},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {101-115},
     zbl = {0851.47022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p101bwm}
}
Junge, Marius. Comparing gaussian and Rademacher cotype for operators on the space of continuous functions. Studia Mathematica, Tome 119 (1996) pp. 101-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p101bwm/

[00000] [COB] F. Cobos, On the Lorentz-Marcinkiewicz operator ideal, Math. Nachr. 126 (1986), 281-300. | Zbl 0611.47036

[00001] [DJ] M. Defant and M. Junge, On absolutely summing operators with application to the (p,q)-summing norm with few vectors, J. Funct. Anal. 103 (1992), 62-73. | Zbl 0749.47008

[00002] [DJ1] M. Defant and M. Junge, Random variables in weak type p spaces, Arch. Math. (Basel) 58 (1992), 399-406. | Zbl 0764.46010

[00003] [LET] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991. | Zbl 0748.60004

[00004] [LIP] W. Linde and A. Pietsch, Mappings of gaussian cylindrical measures in Banach spaces, Theory Probab. Appl. 19 (1974), 445-460. | Zbl 0312.60005

[00005] [LTI] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. | Zbl 0362.46013

[00006] [LTII] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, 1979. | Zbl 0403.46022

[00007] [MAS] V. Mascioni, On weak cotype and weak type in Banach spaces, Note Mat. 8 (1) (1988), 67-110. | Zbl 0818.46020

[00008] [MAU] B. Maurey, Type et cotype dans les espaces munis d'une structure localement inconditionnelle, Sém. Maurey-Schwartz 73-74, École Polytechnique, exp. no. 24-25.

[00009] [MSM] S. J. Montgomery-Smith, The Gaussian cotype of operators from C(K), Israel J. Math. 68 (1989), 123-128. | Zbl 0701.47006

[00010] [PIE] A. Pietsch, Eigenvalues and s-Numbers of Operators, Cambridge Univ. Press, 1987.

[00011] [TAL] M. Talagrand, Cotype of operators from C(K), Invent. Math. 107 (1992), 1-40. | Zbl 0788.47022

[00012] [TA1] M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), 99-149. | Zbl 0712.60044

[00013] [TJM] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman, 1988.