A systematic investigation of algebras of holomorphic functions endowed with the Hadamard product is given. For example we show that the set of all non-invertible elements is dense and that each multiplicative functional is continuous, answering some questions in the literature.
@article{bwmeta1.element.bwnjournal-article-smv118i1p77bwm, author = {Hermann Render and Andreas Sauer}, title = {Algebras of holomorphic functions with Hadamard multiplication}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {77-100}, zbl = {0855.46032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p77bwm} }
Render, Hermann; Sauer, Andreas. Algebras of holomorphic functions with Hadamard multiplication. Studia Mathematica, Tome 119 (1996) pp. 77-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p77bwm/
[00000] [1] S. Agmon, On the singularities of Taylor series with reciprocal coefficients, Pacific J. Math. 2 (1952), 431-453. | Zbl 0047.31201
[00001] [2] M. Akkar, M. El Azhari and M. Oudadess, Continuité des caractères dans les algèbres de Fréchet à bases, Canad. Math. Bull. 31 (1988), 168-174.
[00002] [3] N. U. Arakelyan, On efficient analytic continuation of power series, Math. USSR-Sb. 52 (1985), 21-39. | Zbl 0571.30003
[00003] [4] E. Beckenstein, L. Narici and C. Suffel, Topological Algebras, North-Holland, Amsterdam, 1977.
[00004] [5] R. P. Boas, Jr., Entire Functions, Academic Press, New York, 1954. | Zbl 66.0355.01
[00005] [6] E. Borel, Sur les singularités des séries de Taylor, Bull. Soc. Math. France 26 (1898), 238-248. | Zbl 29.0210.03
[00006] [7] R. M. Brooks, A ring of analytic functions, Studia Math. 24 (1964), 191-210. | Zbl 0199.46201
[00007] [8] R. M. Brooks, A ring of analytic functions, II, ibid. 39 (1971), 199-208. | Zbl 0213.40303
[00008] [9] R. Brück and J. Müller, Invertible elements in a convolution algebra of holomorphic functions, Math. Ann. 294 (1992), 421-438. | Zbl 0769.30002
[00009] [10] R. Brück and J. Müller, Closed ideals in a convolution algebra of holomorphic functions, Canad. J. Math., to appear. | Zbl 0836.30002
[00010] [11] S. El-Helaly and T. Husain, Orthogonal bases are Schauder bases and a characterization of Φ-algebras, Pacific J. Math. 132 (1988), 265-275. | Zbl 0654.46011
[00011] [12] T. Husain and S. Watson, Topological algebras with orthogonal bases, ibid. 91 (1980), 339-347. | Zbl 0477.46042
[00012] [13] T. Husain and S. Watson, Algebras with unconditional orthogonal bases, Proc. Amer. Math. Soc. 79 (1980), 539-545. | Zbl 0434.46029
[00013] [14] B. Mitiagin, S. Rolewicz and W. Żelazko, Entire functions in -algebras, Studia Math. 21 (1962), 291-306. | Zbl 0111.31001
[00014] [15] J. Müller, The Hadamard multiplication theorem and applications in summability theory, Complex Variables Theory Appl. 18 (1992), 155-166. | Zbl 0756.30002
[00015] [16] P. K. Raševskiĭ [P. K. Rashevskiĭ], Closed ideals in a countably generated normed algebra of analytic entire functions, Soviet Math. Dokl. 6 (1965), 717-719. | Zbl 0139.30401
[00016] [17] R. Remmert, Funktionentheorie II, Springer, Berlin, 1991.
[00017] [18] W. Żelazko, Banach Algebras, Elsevier, Amsterdam, 1973.
[00018] [19] W. Żelazko, Metric generalizations of Banach algebras, Dissertationes Math. 47 (1965). | Zbl 0131.13005