Duality on vector-valued weighted harmonic Bergman spaces
Pérez-Esteva, Salvador
Studia Mathematica, Tome 119 (1996), p. 37-47 / Harvested from The Polish Digital Mathematics Library

We study the duals of the spaces Apα(X) of harmonic functions in the unit ball of n with values in a Banach space X, belonging to the Bochner Lp space with weight (1-|x|)α, denoted by Lpα(X). For 0 < α < p-1 we construct continuous projections onto Apα(X) providing a decomposition Lpα(X)=Apα(X)+Mpα(X). We discuss the conditions on p, α and X for which Apα(X)*=Aqα(X*) and Mpα(X)*=Mqα(X*), 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216262
@article{bwmeta1.element.bwnjournal-article-smv118i1p37bwm,
     author = {Salvador P\'erez-Esteva},
     title = {Duality on vector-valued weighted harmonic Bergman spaces},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {37-47},
     zbl = {0854.46022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p37bwm}
}
Pérez-Esteva, Salvador. Duality on vector-valued weighted harmonic Bergman spaces. Studia Mathematica, Tome 119 (1996) pp. 37-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p37bwm/

[00000] [1] S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128. | Zbl 0482.31004

[00001] [2] C. V. Coffman and J. Cohen, The duals of harmonic Bergman spaces, Proc. Amer. Math. Soc. 110 (1990), 697-704. | Zbl 0717.31001

[00002] [3] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Astérisque 77 (1980), 11-66. | Zbl 0472.46040

[00003] [4] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.

[00004] [5] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.

[00005] [6] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Notas Mat. 116, North-Holland, Amsterdam, 1985.

[00006] [7] E. Ligocka, The Hölder duality for harmonic functions, Studia Math. 84 (1986), 269-277. | Zbl 0651.46035

[00007] [8] E. Ligocka, Estimates in Sobolev norms ·ps for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions, Studia Math. 86 (1987), 255-271. | Zbl 0642.46035

[00008] [9] E. Ligocka, On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in Rn, ibid. 87 (1987), 23-32. | Zbl 0658.31006

[00009] [10] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966. | Zbl 0142.38701

[00010] [11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971. | Zbl 0232.42007