We construct strictly ergodic 0-1 Toeplitz flows with pure point spectrum and irrational eigenvalues. It is also shown that the property of being regular is not a measure-theoretic invariant for strictly ergodic Toeplitz flows.
@article{bwmeta1.element.bwnjournal-article-smv118i1p27bwm, author = {A. Iwanik}, title = {Toeplitz flows with pure point spectrum}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {27-35}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p27bwm} }
Iwanik, A. Toeplitz flows with pure point spectrum. Studia Mathematica, Tome 119 (1996) pp. 27-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p27bwm/
[00000] [B-K] W. Bułatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers, Studia Math. 103 (1992), 133-142.
[00001] [D] T. Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math. 74 (1991), 241-256.
[00002] [D-I] T. Downarowicz and A. Iwanik, Quasi-uniform convergence in compact dynamical systems, Studia Math. 89 (1988), 11-25.
[00003] [D-K-L] T. Downarowicz, J. Kwiatkowski and Y. Lacroix, A criterion for Toeplitz flows to be topologically isomorphic and applications, Colloq. Math. 68 (1995), 219-228.
[00004] [G] C. Grillenberger, Zwei kombinatorische Konstruktionen für strikt ergodische Folgen, thesis, Univ. Erlangen-Nürnberg, 1970.
[00005] [H] G. A. Hedlund, Sturmian minimal sets, Amer. J. Math. 66 (1944), 605-620.
[00006] [I-L] A. Iwanik and Y. Lacroix, Some constructions of strictly ergodic non-regular Toeplitz flows, Studia Math. 110 (1994), 191-203.
[00007] [J-K] K. Jacobs and M. Keane, 0-1 sequences of Toeplitz type, Z. Wahrsch. Verw. Gebiete 13 (1969), 123-131.
[00008] [W] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, ibid. 67 (1984), 95-107.