On a converse inequality for maximal functions in Orlicz spaces
Kita, H.
Studia Mathematica, Tome 119 (1996), p. 1-10 / Harvested from The Polish Digital Mathematics Library

Let Φ(t)=ʃ0ta(s)ds and Ψ(t)=ʃ0tb(s)ds, where a(s) is a positive continuous function such that ʃ1a(s)/sds= and b(s) is quasi-increasing and limsb(s)=. Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants c1 and s0 such that ʃ1sa(t)/tdtc1b(c1s) for all ss0; (jj) there exist positive constants c2 and c3 such that ʃ02πΨ((c2)/(||)|(x)|)dxc3+c3ʃ02πΦ(1/(||))Mf(x)dx for all L1().

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216260
@article{bwmeta1.element.bwnjournal-article-smv118i1p1bwm,
     author = {H. Kita},
     title = {On a converse inequality for maximal functions in Orlicz spaces},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {1-10},
     zbl = {0845.42008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p1bwm}
}
Kita, H. On a converse inequality for maximal functions in Orlicz spaces. Studia Mathematica, Tome 119 (1996) pp. 1-10. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p1bwm/

[00000] [1] M. de Guzmán, Differentiation of Integrals in n, Lecture Notes in Math. 481, Springer, Berlin, 1975.

[00001] [2] H. Kita, On maximal functions in Orlicz spaces, submitted. | Zbl 0864.42007

[00002] [3] H. Kita and K. Yoneda, A treatment of Orlicz spaces as a ranked space, Math. Japon. 37 (1992), 775-802. | Zbl 0766.46008

[00003] [4] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Sci., 1991. | Zbl 0751.46021

[00004] [5] G. Moscariello, On the integrability of the Jacobian in Orlicz spaces, Math. Japon. 40 (1994), 323-329. | Zbl 0805.46026

[00005] [6] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, 1991.

[00006] [7] E. M. Stein, Note on the class L log L, Studia Math. 31 (1969), 305-310. | Zbl 0182.47803

[00007] [8] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1985.

[00008] [9] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959. | Zbl 0085.05601