Let and , where a(s) is a positive continuous function such that and b(s) is quasi-increasing and . Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants and such that for all ; (jj) there exist positive constants and such that for all .
@article{bwmeta1.element.bwnjournal-article-smv118i1p1bwm, author = {H. Kita}, title = {On a converse inequality for maximal functions in Orlicz spaces}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {1-10}, zbl = {0845.42008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p1bwm} }
Kita, H. On a converse inequality for maximal functions in Orlicz spaces. Studia Mathematica, Tome 119 (1996) pp. 1-10. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p1bwm/
[00000] [1] M. de Guzmán, Differentiation of Integrals in , Lecture Notes in Math. 481, Springer, Berlin, 1975.
[00001] [2] H. Kita, On maximal functions in Orlicz spaces, submitted. | Zbl 0864.42007
[00002] [3] H. Kita and K. Yoneda, A treatment of Orlicz spaces as a ranked space, Math. Japon. 37 (1992), 775-802. | Zbl 0766.46008
[00003] [4] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Sci., 1991. | Zbl 0751.46021
[00004] [5] G. Moscariello, On the integrability of the Jacobian in Orlicz spaces, Math. Japon. 40 (1994), 323-329. | Zbl 0805.46026
[00005] [6] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, 1991.
[00006] [7] E. M. Stein, Note on the class L log L, Studia Math. 31 (1969), 305-310. | Zbl 0182.47803
[00007] [8] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1985.
[00008] [9] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959. | Zbl 0085.05601