RNP and KMP are equivalent for some Banach spaces with shrinking basis
López, Ginés ; Mena, Juan
Studia Mathematica, Tome 119 (1996), p. 11-17 / Harvested from The Polish Digital Mathematics Library

We get a characterization of PCP in Banach spaces with shrinking basis. Also, we prove that the Radon-Nikodym and Krein-Milman properties are equivalent for closed, convex and bounded subsets of some Banach spaces with shrinking basis.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216258
@article{bwmeta1.element.bwnjournal-article-smv118i1p11bwm,
     author = {Gin\'es L\'opez and Juan Mena},
     title = {RNP and KMP are equivalent for some Banach spaces with shrinking basis},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {11-17},
     zbl = {0854.46016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p11bwm}
}
López, Ginés; Mena, Juan. RNP and KMP are equivalent for some Banach spaces with shrinking basis. Studia Mathematica, Tome 119 (1996) pp. 11-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p11bwm/

[00000] [1] S. Argyros, E. Odell and H. Rosenthal, On certain convex subsets of c0, in: Lecture Notes in Math. 1332, Springer, Berlin, 1988, 80-111.

[00001] [2] J. Bourgain, La propriété de Radon-Nikodym, Publ. Math. Univ. Pierre et Marie Curie 36, 1979.

[00002] [3] J. Bourgain and H. Rosenthal, Geometrical implications of certain finite-dimensional decompositions, Bull. Soc. Math. Belg. Sér. B 32 (1980), 57-82. | Zbl 0463.46011

[00003] [4] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, 1980. | Zbl 0512.46017

[00004] [5] J. Diestel and J. J. Uhl., Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.

[00005] [6] D. van Dulst, Reflexive and Superreflexive Banach Spaces, Math. Centre Tracts 102, Math. Centrum, Amsterdam, 1978. | Zbl 0412.46006

[00006] [7] D. van Dulst, Characterizations of Banach Spaces not Containing l1, CWI Tract 59, Stichting Math. Centrum, Amsterdam, 1989.

[00007] [8] R. C. James, Some interesting Banach spaces, Rocky Mountain J. Math. 23 (1993), 911-937. | Zbl 0797.46010

[00008] [9] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain l1 and whose duals are non-separable, Studia Math. 54 (1975), 81-105. | Zbl 0324.46017

[00009] [10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, 1977. | Zbl 0362.46013

[00010] [11] R. R. Phelps, Dentability and extreme points in Banach spaces, J. Funct. Anal. 17 (1974), 78-90. | Zbl 0287.46026

[00011] [12] W. Schachermayer, The Radon-Nikodym property and the Krein-Milman property are equivalent for strongly regular sets, Trans. Amer. Math. Soc. 303 (1987), 673-687. | Zbl 0633.46023