We get a characterization of PCP in Banach spaces with shrinking basis. Also, we prove that the Radon-Nikodym and Krein-Milman properties are equivalent for closed, convex and bounded subsets of some Banach spaces with shrinking basis.
@article{bwmeta1.element.bwnjournal-article-smv118i1p11bwm, author = {Gin\'es L\'opez and Juan Mena}, title = {RNP and KMP are equivalent for some Banach spaces with shrinking basis}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {11-17}, zbl = {0854.46016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p11bwm} }
López, Ginés; Mena, Juan. RNP and KMP are equivalent for some Banach spaces with shrinking basis. Studia Mathematica, Tome 119 (1996) pp. 11-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i1p11bwm/
[00000] [1] S. Argyros, E. Odell and H. Rosenthal, On certain convex subsets of , in: Lecture Notes in Math. 1332, Springer, Berlin, 1988, 80-111.
[00001] [2] J. Bourgain, La propriété de Radon-Nikodym, Publ. Math. Univ. Pierre et Marie Curie 36, 1979.
[00002] [3] J. Bourgain and H. Rosenthal, Geometrical implications of certain finite-dimensional decompositions, Bull. Soc. Math. Belg. Sér. B 32 (1980), 57-82. | Zbl 0463.46011
[00003] [4] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, 1980. | Zbl 0512.46017
[00004] [5] J. Diestel and J. J. Uhl., Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
[00005] [6] D. van Dulst, Reflexive and Superreflexive Banach Spaces, Math. Centre Tracts 102, Math. Centrum, Amsterdam, 1978. | Zbl 0412.46006
[00006] [7] D. van Dulst, Characterizations of Banach Spaces not Containing , CWI Tract 59, Stichting Math. Centrum, Amsterdam, 1989.
[00007] [8] R. C. James, Some interesting Banach spaces, Rocky Mountain J. Math. 23 (1993), 911-937. | Zbl 0797.46010
[00008] [9] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain and whose duals are non-separable, Studia Math. 54 (1975), 81-105. | Zbl 0324.46017
[00009] [10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, 1977. | Zbl 0362.46013
[00010] [11] R. R. Phelps, Dentability and extreme points in Banach spaces, J. Funct. Anal. 17 (1974), 78-90. | Zbl 0287.46026
[00011] [12] W. Schachermayer, The Radon-Nikodym property and the Krein-Milman property are equivalent for strongly regular sets, Trans. Amer. Math. Soc. 303 (1987), 673-687. | Zbl 0633.46023