Compact AC-operators
Doust, Ian ; Walden, Byron
Studia Mathematica, Tome 119 (1996), p. 275-287 / Harvested from The Polish Digital Mathematics Library

We prove that compact AC-operators have a representation as a combination of disjoint projections which mirrors that for compact normal operators. We also show that unlike arbitrary AC-operators, compact AC-operators admit a unique splitting into real and imaginary parts, and that these parts must necessarily be compact.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216256
@article{bwmeta1.element.bwnjournal-article-smv117i3p275bwm,
     author = {Ian Doust and Byron Walden},
     title = {Compact AC-operators},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {275-287},
     zbl = {0851.47025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i3p275bwm}
}
Doust, Ian; Walden, Byron. Compact AC-operators. Studia Mathematica, Tome 119 (1996) pp. 275-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i3p275bwm/

[00000] [BDG] E. Berkson, I. Doust and T. A. Gillespie, Properties of AC-operators, preprint. | Zbl 0907.47030

[00001] [BG] E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc (2) 30 (1984), 305-321. | Zbl 0537.47017

[00002] [CD] Q. Cheng and I. Doust, Well-bounded operators on nonreflexive Banach spaces, Proc. Amer. Math. Soc., to appear.

[00003] [DdL] I. Doust and R. deLaubenfels, Functional calculus, integral representations, and Banach space geometry, Quaestiones Math. 17 (1994), 161-171.

[00004] [DQ] I. Doust and B. Qiu, The spectral theorem for well-bounded operators, J. Austral. Math. Soc. Ser. A 54 (1993), 334-351. | Zbl 0801.47022

[00005] [Dow] H. R. Dowson, Spectral Theory of Linear Operators, London Math. Soc. Monographs 12, Academic Press, London, 1978. | Zbl 0384.47001

[00006] [R] J. R. Ringrose, On well-bounded operators, J. Austral. Math. Soc. Ser. A 1 (1960), 334-343. | Zbl 0104.08902

[00007] [Sm] D. R. Smart, Conditionally convergent spectral expansions, ibid. 1 (1960), 319-333. | Zbl 0104.08901