We prove that compact AC-operators have a representation as a combination of disjoint projections which mirrors that for compact normal operators. We also show that unlike arbitrary AC-operators, compact AC-operators admit a unique splitting into real and imaginary parts, and that these parts must necessarily be compact.
@article{bwmeta1.element.bwnjournal-article-smv117i3p275bwm, author = {Ian Doust and Byron Walden}, title = {Compact AC-operators}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {275-287}, zbl = {0851.47025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i3p275bwm} }
Doust, Ian; Walden, Byron. Compact AC-operators. Studia Mathematica, Tome 119 (1996) pp. 275-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i3p275bwm/
[00000] [BDG] E. Berkson, I. Doust and T. A. Gillespie, Properties of AC-operators, preprint. | Zbl 0907.47030
[00001] [BG] E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc (2) 30 (1984), 305-321. | Zbl 0537.47017
[00002] [CD] Q. Cheng and I. Doust, Well-bounded operators on nonreflexive Banach spaces, Proc. Amer. Math. Soc., to appear.
[00003] [DdL] I. Doust and R. deLaubenfels, Functional calculus, integral representations, and Banach space geometry, Quaestiones Math. 17 (1994), 161-171.
[00004] [DQ] I. Doust and B. Qiu, The spectral theorem for well-bounded operators, J. Austral. Math. Soc. Ser. A 54 (1993), 334-351. | Zbl 0801.47022
[00005] [Dow] H. R. Dowson, Spectral Theory of Linear Operators, London Math. Soc. Monographs 12, Academic Press, London, 1978. | Zbl 0384.47001
[00006] [R] J. R. Ringrose, On well-bounded operators, J. Austral. Math. Soc. Ser. A 1 (1960), 334-343. | Zbl 0104.08902
[00007] [Sm] D. R. Smart, Conditionally convergent spectral expansions, ibid. 1 (1960), 319-333. | Zbl 0104.08901