Régularité Besov des trajectoires du processus intégral de Skorokhod
Lorang, Gérard
Studia Mathematica, Tome 119 (1996), p. 205-223 / Harvested from The Polish Digital Mathematics Library

Let Wt:0t1 be a linear Brownian motion, starting from 0, defined on the canonical probability space (Ω,ℱ,P). Consider a process ut:0t1 belonging to the space 2,1 (see Definition II.2). The Skorokhod integral Ut=ʃ0tuδW is then well defined, for every t ∈ [0,1]. In this paper, we study the Besov regularity of the Skorokhod integral process tUt. More precisely, we prove the following THEOREM III.1. (1)If 0 < α < 1/2 and up,1 with 1/α < p < ∞, then a.s. tUtp,qα for all q ∈ [1,∞], and tUtp,α,0. (2) For every even integer p ≥ 4, if there exists δ > 2(p+1) such that uδ,2([0,1]×Ω), then a.s. tUtp,1/2. (For the definition of the Besov spaces p,qα and p,α,0, see Section I; for the definition of the spaces p,1 and p,2,p2, see Definition II.2.) An analogous result for the classical Itô integral process has been obtained by B. Roynette in [R]. Let us finally observe that D. Nualart and E. Pardoux [NP] showed that the Skorokhod integral process tUt admits an a.s. continuous modification, under smoothness conditions on the integrand similar to those stated in Theorem II.1 (cf. Theorems 5.2 and 5.3 of [NP]).

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216252
@article{bwmeta1.element.bwnjournal-article-smv117i3p205bwm,
     author = {G\'erard Lorang},
     title = {R\'egularit\'e Besov des trajectoires du processus int\'egral de Skorokhod},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {205-223},
     zbl = {0858.60042},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i3p205bwm}
}
Lorang, Gérard. Régularité Besov des trajectoires du processus intégral de Skorokhod. Studia Mathematica, Tome 119 (1996) pp. 205-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i3p205bwm/

[00000] [BI] M. T. Barlow and P. Imkeller, On some sample path properties of Skorokhod integral processes, in: Séminaire de Probabilités, XXVI, Lecture Notes in Math. 1526, Springer, Berlin, 1992, 1992, 70-80. | Zbl 0761.60047

[00001] [BL] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer, Berlin, 1976. | Zbl 0344.46071

[00002] [B] R. Buckdahn, Quasilinear partial stochastic differential equations without non-anticipation requirement, preprint 176, Humboldt-Universität Berlin, 1988.

[00003] [C] Z. Ciesielski, On the isomorphisms of the spaces Hα and m, Bull. Acad. Polon. Sci. 8 (1960), 217-222. | Zbl 0093.12301

[00004] [CKR] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204.

[00005] [GT] B. Gaveau et P. Trauber, L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel, J. Funct. Anal. 46 (1982), 230-238. | Zbl 0488.60068

[00006] [I1] P. Imkeller, Regularity of Skorohod integral based on integrands in a finite Wiener chaos, Probab. Theory Related Fields 98 (1994), 137-142. | Zbl 0792.60047

[00007] [I2] P. Imkeller, Occupation densities for stochastic integral processes in the second Wiener chaos, ibid. 91 (1992), 1-24.

[00008] [NP] D. Nualart and E. Pardoux, Stochastic calculus with anticipating integrands, ibid. 78 (1988), 535-581. | Zbl 0629.60061

[00009] [NZ] D. Nualart and M. Zakai, Generalized stochastic integrals and the Malliavin calculus, ibid. 73 (1986), 255-280. | Zbl 0601.60053

[00010] [PP] E. Pardoux and Ph. Protter, A two-sided stochastic integral and its calculus, ibid. 76 (1987), 15-49.

[00011] [P] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. I, 1976. | Zbl 0356.46038

[00012] [R] B. Roynette, Mouvement Brownien et espaces de Besov, Stochastics Stochastics Rep. 43 (1993), 221-260.

[00013] [S] A. V. Skorokhod, On a generalization of a stochastic integral, Theory Probab. Appl. 20 (1975), 219-233. | Zbl 0333.60060

[00014] [W] S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin Calculus, Tata Institute of Fundamental Research, Springer, Berlin, 1984. | Zbl 0546.60054