The irreducible Hilbert space representations of a ⁎-algebra, the graded analogue of the Lie algebra of the group of plane motions, are classified up to unitary equivalence.
@article{bwmeta1.element.bwnjournal-article-smv117i2p195bwm, author = {Sergei Silvestrov}, title = {Hilbert space representations of the graded analogue of the Lie algebra of the group of plane motions}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {195-203}, zbl = {0837.47039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p195bwm} }
Silvestrov, Sergei. Hilbert space representations of the graded analogue of the Lie algebra of the group of plane motions. Studia Mathematica, Tome 119 (1996) pp. 195-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p195bwm/
[00000] [1] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.
[00001] [2] L. Corwin, Y. Ne'eman and S. Sternberg, Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry), Rev. Modern Phys. 47 (3) (1975), 573-603. | Zbl 0557.17004
[00002] [3] M. V. Karasev and V. P. Maslov, Non-Lie permutation relations, Russian Math. Surveys 45 (5) (1990), 51-98. | Zbl 0727.16025
[00003] [4] A. K. Kwaśniewski, Clifford- and Grassmann-like algebras - old and new, J. Math. Phys. 26 (1985), 2234-2238. | Zbl 0583.15018
[00004] [5] W. Marcinek, Generalized Lie algebras and related topics, 1, 2, Acta Univ. Wratislav. Mat. Fiz. Astronom. 55 (1991). | Zbl 0762.17022
[00005] [6] V. L. Ostrovskiĭ and Yu. S. Samoĭlenko, Unbounded operators satisfying non-Lie commutation relations, Rep. Math. Phys. 28 (3) (1989), 93-106.
[00006] [7] V. L. Ostrovskiĭ and S. D. Silvestrov, Representations of the real forms of the graded analogue of a Lie algebra, Ukrain. Mat. Zh. 44 (11) (1992), 1518-1524 (in Russian).
[00007] [8] V. Rittenberg and D. Wyler, Generalized superalgebras, Nuclear Phys. B 139 (1978), 189-202. | Zbl 0423.17004
[00008] [9] Yu. S. Samoĭlenko, Spectral Theory of Families of Self-Adjoint Operators, Kluwer, Dordrecht, 1990.
[00009] [10] M. Scheunert, Generalized Lie algebras, J. Math. Phys. 20 (1979), 712-720. | Zbl 0423.17003
[00010] [11] S. D. Silvestrov, On the classification of 3-dimensional graded ε-Lie algebras, Research Reports Series, No. 2, Department of Mathematics, Umeå University, 1993, 49 pp.
[00011] [12] S. D. Silvestrov, The classification of 3-dimensional graded ε-Lie algebras, to appear.