Ergodic theory for the one-dimensional Jacobi operator
Núñez, Carmen ; Obaya, Rafael
Studia Mathematica, Tome 119 (1996), p. 149-171 / Harvested from The Polish Digital Mathematics Library

We determine the number and properties of the invariant measures under the projective flow defined by a family of one-dimensional Jacobi operators. We calculate the derivative of the Floquet coefficient on the absolutely continuous spectrum and deduce the existence of the non-tangential limit of Weyl m-functions in the L1-topology.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216249
@article{bwmeta1.element.bwnjournal-article-smv117i2p149bwm,
     author = {Carmen N\'u\~nez and Rafael Obaya},
     title = {Ergodic theory for the one-dimensional Jacobi operator},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {149-171},
     zbl = {0840.28008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p149bwm}
}
Núñez, Carmen; Obaya, Rafael. Ergodic theory for the one-dimensional Jacobi operator. Studia Mathematica, Tome 119 (1996) pp. 149-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p149bwm/

[00000] [1] P. Deift and B. Simon, Almost periodic Schrödinger operators III, Comm. Math. Phys. 90 (1983), 389-411. | Zbl 0562.35026

[00001] [2] F. Delyon and B. Souillard, The rotation number for finite difference operators and its properties, ibid. 89 (1983), 415-426. | Zbl 0525.39003

[00002] [3] R. Johnson, Analyticity of spectral subbundles, J. Differential Equations 35 (1980), 366-387. | Zbl 0458.34017

[00003] [4] R. Johnson, Exponential dichotomy, rotation number, and linear differential equations with bounded coefficients, ibid. 61 (1986), 54-78.

[00004] [5] S. Kotani, Lyapunov indices determine absolutely continuous spectrum of stationary random 1-dimensional Schrödinger equations, in: Stochastic Analysis, K. Ito (ed.), North-Holland, Amsterdam, 1984, 225-248.

[00005] [6] Y. Last, A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants, Comm. Math. Phys. 151 (1993), 183-192. | Zbl 0782.34084

[00006] [7] S. Novo and R. Obaya, An ergodic classification of bidimensional linear systems, preprint, University of Valladolid, 1994. | Zbl 0869.28009

[00007] [8] C. Núñez and R. Obaya, Non-tangential limit of the Weyl m-functions for the ergodic Schrödinger equation, preprint, University of Valladolid, 1994.

[00008] [9] C. Núñez and R. Obaya, Semicontinuity of the derivative of the rotation number, C. R. Acad. Sci. Paris Sér. I 320 (1995), 1243-1248. | Zbl 0846.58049

[00009] [10] R. Obaya and M. Paramio, Directional differentiability of the rotation number for the almost periodic Schrödinger equation, Duke Math. J. 66 (1992), 521-552. | Zbl 0763.34060

[00010] [11] V. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231.

[00011] [12] L. Pastur, Spectral properties of disordered systems in the one body approximation, Comm. Math. Phys. 75 (1980), 179-196. | Zbl 0429.60099

[00012] [13] R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), 320-358. | Zbl 0372.34027

[00013] [14] B. Simon, Kotani theory for one dimensional stochastic Jacobi matrices, Comm. Math. Phys. 89 (1983), 227-234. | Zbl 0534.60057