Open mapping theorem and inversion theorem for γ-paraconvex multivalued mappings and applications
Jourani, Abderrahim
Studia Mathematica, Tome 119 (1996), p. 123-136 / Harvested from The Polish Digital Mathematics Library

We extend the open mapping theorem and inversion theorem of Robinson for convex multivalued mappings to γ-paraconvex multivalued mappings. Some questions posed by Rolewicz are also investigated. Our results are applied to obtain a generalization of the Farkas lemma for γ-paraconvex multivalued mappings.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216247
@article{bwmeta1.element.bwnjournal-article-smv117i2p123bwm,
     author = {Abderrahim Jourani},
     title = {Open mapping theorem and inversion theorem for $\gamma$-paraconvex multivalued mappings and applications},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {123-136},
     zbl = {0841.46002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p123bwm}
}
Jourani, Abderrahim. Open mapping theorem and inversion theorem for γ-paraconvex multivalued mappings and applications. Studia Mathematica, Tome 119 (1996) pp. 123-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p123bwm/

[00000] [1] J. M. Borwein and D. M. Zhuang, Verifiable necessary and sufficient conditions for regularity of set-valued and single-valued maps, J. Math. Anal. Appl. 134 (1988), 441-459. | Zbl 0654.49004

[00001] [2] F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976), 165-174. | Zbl 0404.90100

[00002] [3] R. Cominetti, Metric regularity, tangent sets and second-order optimality conditions, Appl. Math. Optim. 21 (1990), 265-288. | Zbl 0692.49018

[00003] [4] S. Dolecki, Open relation theorem without closedness assumption, Proc. Amer. Math. Soc. 109 (1990), 1019-1024. | Zbl 0721.46003

[00004] [5] B. M. Glover, V. Jeyakumar and W. Oettli, A Farkas lamma for difference sublinear systems and quasi-differentiable programming, Math. Programming 63 (1994), 109-125. | Zbl 0804.49015

[00005] [6] J. Gwinner, Results of Farkas type, Numer. Funct. Anal. Optim. 9 (1987), 471-520. | Zbl 0598.49017

[00006] [7] V. Jeyakumar, A general Farkas lemma and characterization of optimality for a nonsmooth program involving convex processes, J. Optim. Theory Appl. 55 (1987), 449-461. | Zbl 0616.90072

[00007] [8] A. Jourani, Intersection formulae and the marginal function in Banach spaces, J. Math. Anal. Appl. 192 (1995), 867-891. | Zbl 0831.46044

[00008] [9] A. Jourani, Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions, 1995, submitted. | Zbl 0862.49018

[00009] [10] A. Jourani and L. Thibault, The use of metric graphical regularity in approximate subdifferential calculus rule in finite dimensions, Optimization 21 (1990), 509-519. | Zbl 0721.49018

[00010] [11] J.-P. Penot, Metric regularity, openness and Lipschitzian behavior of multifunctions, Nonlinear Anal. 13 (1989), 629-643. | Zbl 0687.54015

[00011] [12] S. M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. Res. 1 (1976), 130-143. | Zbl 0418.52005

[00012] [13] R. T. Rockafellar, Extensions of subgradient calculus with applications to optimization, Nonlinear Anal. 9 (1985), 665-698. | Zbl 0593.49013

[00013] [14] S. Rolewicz, On paraconvex multifunctions, Oper. Res. Verfahren 31 (1979), 539-546. | Zbl 0403.49021

[00014] [15] S. Rolewicz, On γ-paraconvex multifunctions, Math. Japon. 24 (1979), 293-300. | Zbl 0434.54009

[00015] [16] S. Rolewicz, On conditions warranting Φ2-subdifferentiability, Math. Programming Study 14 (1981), 215-224. | Zbl 0444.90106

[00016] [17] K. Shimizu, E. Aiyoshi and R. Katayama, Generalized Farkas's theorem and optimization of infinitely constrained problems, J. Optim. Theory Appl. 40 (1983), 451-462. | Zbl 0494.90062

[00017] [18] C. Swartz, A general Farkas lemma, ibid. 46 (1985), 237-244. | Zbl 0543.49010

[00018] [19] C. Ursescu, Multifunctions with convex closed graph, Czechoslovak Math. J. 7 (1975), 438-441.

[00019] [20] D. E. Ward and J. M. Borwein, Nonsmooth calculus in finite dimensions, SIAM J. Control Optim. 25 (1987), 1312-1340. | Zbl 0633.46043

[00020] [21] C. Zalinescu, On Gwinner's paper "Results of Farkas type", Numer. Funct. Anal. Optim. 10 (1989), 401-414. | Zbl 0679.49024