The problem of approximation by accretive elements in a unital C*-algebra suggested by P. R. Halmos is substantially solved. The key idea is the observation that accretive approximation can be regarded as a combination of positive and self-adjoint approximation. The approximation results are proved both in the C*-norm and in another, topologically equivalent norm.
@article{bwmeta1.element.bwnjournal-article-smv117i2p115bwm, author = {Reiner Berntzen}, title = {Accretive approximation in C*-algebras}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {115-121}, zbl = {0838.47009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p115bwm} }
Berntzen, Reiner. Accretive approximation in C*-algebras. Studia Mathematica, Tome 119 (1996) pp. 115-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p115bwm/
[00000] [Be 1] R. Berntzen, Normal spectral approximation in C*-algebras and in von Neumann algebras, Rend. Circ. Mat. Palermo, to appear. | Zbl 0851.46039
[00001] [Be 2] R. Berntzen, Extreme points in the set of normal spectral approximants, Acta Sci. Math. (Szeged) 59 (1994), 143-160. | Zbl 0802.47012
[00002] [Be 3] R. Berntzen, Spectral approximation of normal operators, ibid., to appear.
[00003] [Bo 1] R. Bouldin, Positive approximants, Trans. Amer. Math. Soc. 177 (1973), 391-403. | Zbl 0264.47020
[00004] [Bo 2] R. Bouldin, Operators with a unique positive near-approximant, Indiana Univ. Math. J. 23 (1973), 421-427. | Zbl 0269.47010
[00005] [Bo 3] R. Bouldin, Self-adjoint approximants, ibid. 27 (1978), 299-307.
[00006] [Ha] P. R. Halmos, Positive approximants of operators, ibid. 21 (1972), 951-960. | Zbl 0263.47018
[00007] [Pe] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, London Math. Soc. Monographs 13, Academic Press, London, 1989.
[00008] [Val] F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964.