An exactness lemma offers a simplified account of the spectral properties of the "holomorphic" analogue of normal solvability.
@article{bwmeta1.element.bwnjournal-article-smv117i2p107bwm, author = {Robin Harte}, title = {On Kato non-singularity}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {107-114}, zbl = {0838.47005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p107bwm} }
Harte, Robin. On Kato non-singularity. Studia Mathematica, Tome 119 (1996) pp. 107-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p107bwm/
[00000] [1] R. H. Bouldin, Closed range and relative regularity for products, J. Math. Anal. 61 (1977), 397-403. | Zbl 0367.47020
[00001] [2] S. R. Caradus, Operator Theory of the Pseudoinverse, Queen's Papers in Pure and Appl. Math. 38, Queen's Univ., Kingston, Ont., 1974.
[00002] [3] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968. | Zbl 0189.44201
[00003] [4] J. K. Finch, The single-valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. | Zbl 0315.47002
[00004] [5] K. H. Förster, Über die Invarianz einiger Räume, die zum Operator gehören, Arch. Math. (Basel) 17 (1966), 56-64. | Zbl 0127.07903
[00005] [6] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966. | Zbl 0148.12501
[00006] [7] R. E. Harte, Invertibility and Singularity, Dekker, New York, 1988.
[00007] [8] R. E. Harte, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-801.
[00008] [9] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. | Zbl 0090.09003
[00009] [10] K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), 127-135. | Zbl 0812.47031
[00010] [11] K. B. Laursen and M. M. Neumann, Local spectral theory and spectral inclusions, Glasgow Math. J. 36 (1994), 331-343. | Zbl 0851.47002
[00011] [12] W. Y. Lee, A generalization of the punctured neighborhood theorem, Proc. Amer. Math. Soc. 117 (1993), 107-109. | Zbl 0780.47004
[00012] [13] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectrales, Glasgow Math. J. 29 (1987), 159-175. | Zbl 0657.47038
[00013] [14] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. | Zbl 0694.47002
[00014] [15] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
[00015] [16] M. Mbekhta, Local spectrum and generalized spectrum, ibid. 112 (1991), 457-463. | Zbl 0739.47002
[00016] [17] M. Mbekhta et A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Publ. Inst. Rech. Math. Av. Lille 22 (1990), XII.
[00017] [18] V. Müller, On the regular spectrum, J. Operator Theory 31 (1995), 366-380.
[00018] [19] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209. | Zbl 0794.47003
[00019] [20] P. Saphar, Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. | Zbl 0139.08502
[00020] [21] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.
[00021] [22] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117 (1993), 715-719. | Zbl 0780.47019
[00022] [23] C. Schmoeger, On a generalized punctured neighborhood theorem in L(X), ibid. 123 (1995), 1237-1240. | Zbl 0836.47002
[00023] [24] T. Starr and T. West, A positive contribution to operator theory, Bord na Mona Bull. 5 (1938), 6.