Almost exactness in normed spaces II
Harte, Robin ; Мbekhta, Мostafa
Studia Mathematica, Tome 119 (1996), p. 101-105 / Harvested from The Polish Digital Mathematics Library

In the normed space of bounded operators between a pair of normed spaces, the set of operators which are "bounded below" forms the interior of the set of one-one operators. This note is concerned with the extension of this observation to certain spaces of pairs of operators.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216244
@article{bwmeta1.element.bwnjournal-article-smv117i2p101bwm,
     author = {Robin Harte and Mostafa Mbekhta},
     title = {Almost exactness in normed spaces II},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {101-105},
     zbl = {0844.47023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p101bwm}
}
Harte, Robin; Мbekhta, Мostafa. Almost exactness in normed spaces II. Studia Mathematica, Tome 119 (1996) pp. 101-105. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p101bwm/

[00000] [1] R. E. Harte, Almost open mappings between normed spaces, Proc. Amer. Math. Soc. 90 (1984), 243-249. | Zbl 0541.46005

[00001] [2] R. E. Harte, Almost exactness in normed spaces, ibid. 100 (1987), 257-265. | Zbl 0626.47001

[00002] [3] R. E. Harte, Invertibility and Singularity, Dekker, New York, 1988.

[00003] [4] R. E. Harte, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-801.

[00004] [5] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. | Zbl 0694.47002

[00005] [6] F. A. Potra and V. Pták, Nondiscrete Induction and Iterative Processes, Pitman Res. Notes 103, Pitman, New York, 1984. | Zbl 0549.41001

[00006] [7] V. Wrobel, The boundary of Taylor's joint spectrum for a pair of commuting Banach space operators, Studia Math. 84 (1986), 105-111. | Zbl 0619.47002