Extension of operators from weak*-closed sub-spaces of l1 into C(K) spaces
Johnson, W. ; Zippin, M.
Studia Mathematica, Tome 113 (1995), p. 43-55 / Harvested from The Polish Digital Mathematics Library

It is proved that every operator from a weak*-closed subspace of 1 into a space C(K) of continuous functions on a compact Hausdorff space K can be extended to an operator from 1 to C(K).

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216240
@article{bwmeta1.element.bwnjournal-article-smv117i1p43bwm,
     author = {W. Johnson and M. Zippin},
     title = {Extension of operators from weak*-closed sub-spaces of $l\_1$ into C(K) spaces},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {43-55},
     zbl = {0851.46017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i1p43bwm}
}
Johnson, W.; Zippin, M. Extension of operators from weak*-closed sub-spaces of $l_1$ into C(K) spaces. Studia Mathematica, Tome 113 (1995) pp. 43-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i1p43bwm/

[00000] [Ami] D. Amir, Continuous function spaces with the separable projection property, Bull. Res. Council Israel 10F (1962), 163-164.

[00001] [BePe] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53-62. | Zbl 0094.30303

[00002] [BP] E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98. | Zbl 0098.07905

[00003] [Bou] N. Bourbaki, General Topology, Part 1, Addison-Wesley, 1966.

[00004] [Die] J. Diestel, Geometry of Banach Spaces - Selected Topics, Lecture Notes in Math. 485, Springer, 1975. | Zbl 0307.46009

[00005] [Joh] W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337-345. | Zbl 0236.47045

[00006] [JR] W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77-92. | Zbl 0213.39301

[00007] [JRZ] W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions, and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. | Zbl 0217.16103

[00008] [JZ1] W. B. Johnson and M. Zippin, On subspaces of quotients of (G)p and (G)c0, ibid. 13 (1972), 311-316.

[00009] [JZ2] W. B. Johnson and M. Zippin, Extension of operators from subspaces of c0(γ) into C(K) spaces, Proc. Amer. Math. Soc. 107 (1989), 751-754. | Zbl 0697.46006

[00010] [Lin] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964). | Zbl 0141.12001

[00011] [LP] J. Lindenstrauss and A. Pełczyński, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249. | Zbl 0224.46041

[00012] [LR] J. Lindenstrauss and H. P. Rosenthal, Automorphisms in c0, 1, and m, Israel J. Math. 7 (1969), 227-239.

[00013] [LT1] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. | Zbl 0362.46013

[00014] [LT2] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, 1979. | Zbl 0403.46022

[00015] [Mac] G. Mackey, Note on a theorem of Murray, Bull. Amer. Math. Soc. 52 (1046), 322-325. | Zbl 0063.03692

[00016] [Peł] A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239-242. | Zbl 0223.46019

[00017] [Sam1] D. Samet, Vector measures are open maps, Math. Oper. Res. 9 (1984), 471-474. | Zbl 0578.28008

[00018] [Sam2] D. Samet, Continuous selections for vector measures, ibid. 12 (1987), 536-543. | Zbl 0644.28006

[00019] [Zip] M. Zippin, A global approach to certain operator extension problems, in: Longhorn Notes, Lecture Notes in Math. 1470, Springer, 1991, 78-84.