The Choquet-Deny theorem and Deny’s theorem are extended to the vector-valued case. They are applied to give a simple nonprobabilistic proof of the vector-valued renewal theorem, which is used to study the -dimension, the -density and the Fourier transformation of vector-valued self-similar measures. The results answer some questions raised by Strichartz.
@article{bwmeta1.element.bwnjournal-article-smv117i1p1bwm, author = {Ka-Sing Lau and Jian-Rong Wang and Cho-Ho Chu}, title = {Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {1-28}, zbl = {0839.43002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i1p1bwm} }
Lau, Ka-Sing; Wang, Jian-Rong; Chu, Cho-Ho. Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures. Studia Mathematica, Tome 113 (1995) pp. 1-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i1p1bwm/
[00000] [B] M. Barnsley, Fractals Everywhere, Academic Press, 1988. | Zbl 0691.58001
[00001] [BW] Y. Benyamini and Y. Weit, Harmonic analysis of spherical functions on SU(1,1), Ann. Inst. Fourier (Grenoble) 42 (3) (1992), 671-694. | Zbl 0763.43006
[00002] [CM] R. Cawley and R. Mauldin, Multifractal decompositions of Moran fractals, Adv. in Math. 92 (1992), 196-236. | Zbl 0763.58018
[00003] [CD] G. Choquet et J. Deny, Sur l'équation de convolution μ = μ ⁎ σ, C. R. Acad. Sci. Paris 250 (1960), 799-801. | Zbl 0093.12802
[00004] [CL] C. H. Chu and K. S. Lau, Operator-valued solutions of the integrated Cauchy functional equation, J. Operator Theory 32 (1994), 157-183. | Zbl 0847.43001
[00005] [Ch] K. Chung, A Course in Probability Theory, 2nd ed., Academic Press, 1974.
[00006] [Ç] E. Çinlar, Introduction to Stochastic Processes, Prentice-Hall, 1975. | Zbl 0341.60019
[00007] [DS] L. Davies and D. N. Shanbhag, A generalization of a theorem of Deny with application in characterization problems, Quart. J. Math. Oxford 38 (1987), 13-34. | Zbl 0617.60016
[00008] [D] J. Deny, Sur l'équation de convolution μ ⁎ σ = μ, Sém. Théor. Potent. M. Brelot, Fac. Sci. Paris 4 (1960).
[00009] [EM] G. Edgar and R. Mauldin, Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc. 65 (1992), 196-236. | Zbl 0764.28007
[00010] [F] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, New York, 1990.
[00011] [Fe] W. Feller, An Introduction to Probability Theory and its Applications, 3nd ed., Vol. 2, Wiley, New York, 1968.
[00012] [Fu] H. Fürstenberg, Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 335-386. | Zbl 0192.12704
[00013] [H] J. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), 713-747. | Zbl 0598.28011
[00014] [K] J.-P. Kahane, Lectures on Mean Periodic Functions, Tata Inst., Bombay, 1959. | Zbl 0099.32301
[00015] [La] S. Lalley, The packing and covering function of some self-similar fractals, Indiana Univ. Math. J. 37 (1988), 699-709. | Zbl 0665.28005
[00016] [L1] K. S. Lau, Fractal measures and mean p-variations, J. Funct. Anal. 108 (1992), 421-457.
[00017] [L2] K. S. Lau, Self-similarity, -spectrum and multifractal formalism, preprint.
[00018] [LR] K. S. Lau and C. R. Rao, Integrated Cauchy functional equation and characterizations of the exponential law, Sankhyā A 44 (1982), 72-90. | Zbl 0584.62019
[00019] [LW] K. S. Lau and J. R. Wang, Mean quadratic variations and Fourier asymptotics of self-similar measures, Monatsh. Math. 115 (1993), 99-132. | Zbl 0778.28005
[00020] [LZ] K. S. Lau and W. B. Zeng, The convolution equation of Choquet and Deny on semigroups, Studia Math. 97 (1990), 115-135. | Zbl 0719.43002
[00021] [Ma] B. Mandelbrot, The Fractal Geometry of Nature, Freeman, 1983.
[00022] [MW] R. Mauldin and S. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811-829. | Zbl 0706.28007
[00023] [M] H. Minc, Nonnegative Matrices, Wiley, 1988.
[00024] [RL] B. Ramachandran and K. S. Lau, Functional Equations in Probability Theory, Academic Press, 1991.
[00025] [RS] C. R. Rao and D. N. Shanbhag, Recent results on characterizations of probability distributions: A unified approach through an extension of Deny's theorem, Adv. Appl. Probab. 18 (1986), 660-678. | Zbl 0607.62005
[00026] [Sc] A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), 111-115. | Zbl 0807.28005
[00027] [Sch] L. Schwartz, Théorie générale des fonctions moyennes-périodiques, Ann. of Math. 48 (1947), 857-929. | Zbl 0030.15004
[00028] [S] E. Seneta, Nonnegative Matrices, Wiley, New York, 1973.
[00029] [Str1] R. Strichartz, Self-similar measures and their Fourier transformations I, Indiana Univ. Math. J. 39 (1990), 797-817.
[00030] [Str2] R. Strichartz, Self-similar measures and their Fourier transformations II, Trans. Amer. Math. Soc. 336 (1993), 335-361. | Zbl 0765.28007
[00031] [Str3] R. Strichartz, Self-similar measures and their Fourier transformations III, Indiana Univ. Math. J. 42 (1993), 367-411. | Zbl 0790.28003
[00032] [W] J. L. Wang, Topics in fractal geometry, Ph.D. Thesis, North Texas University, 1994.