For a Tikhonov space X we denote by Pc(X) the semilattice of all continuous pseudometrics on X. It is proved that compact Hausdorff spaces X and Y are homeomorphic if and only if there is a positive-homogeneous (or an additive) semi-lattice isomorphism T:Pc(X) → Pc(Y). A topology on Pc(X) is called admissible if it is intermediate between the compact-open and pointwise topologies on Pc(X). Another result states that Tikhonov spaces X and Y are homeomorphic if and only if there exists a positive-homogeneous (or an additive) semi-lattice homeomorphism , where are admissible topologies on Pc(X) and Pc(Y).
@article{bwmeta1.element.bwnjournal-article-smv116i3p303bwm, author = {Taras Banakh}, title = {Sur la caract\'erisation topologique des compacts \`a l'aide des demi-treillis des pseudom\'etriques continues}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {303-310}, language = {fr}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p303bwm} }
Banakh, Taras. Sur la caractérisation topologique des compacts à l'aide des demi-treillis des pseudométriques continues. Studia Mathematica, Tome 113 (1995) pp. 303-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p303bwm/
[00000] [Ba] S. Banach, Théorie des opérations linéaires, Warszawa, 1932. | Zbl 0005.20901
[00001] [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
[00002] [GK] I. M. Gelfand and A. N. Kolmogoroff [A. N. Kolmogorov], On rings of continuous functions on topological spaces, Dokl. Akad. Nauk SSSR 22 (1939), 11-15. | Zbl 65.0500.03
[00003] [Ka] I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), 617-623. | Zbl 0031.21902
[00004] [Se] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
[00005] [Sh] T. Shirota, A generalization of a theorem of I. Kaplansky, Osaka Math. J. 4 (1952), 121-132. | Zbl 0048.08902