A remark on non-existence of an algebra norm for the algebra of continuous functions on a topological space admitting an unbounded continuous function
Pruss, Alexander
Studia Mathematica, Tome 113 (1995), p. 295-297 / Harvested from The Polish Digital Mathematics Library

Let X be any topological space, and let C(X) be the algebra of all continuous complex-valued functions on X. We prove a conjecture of Yood (1994) to the effect that if there exists an unbounded element of C(X) then C(X) cannot be made into a normed algebra.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216235
@article{bwmeta1.element.bwnjournal-article-smv116i3p295bwm,
     author = {Alexander Pruss},
     title = {A remark on non-existence of an algebra norm for the algebra of continuous functions on a topological space admitting an unbounded continuous function},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {295-297},
     zbl = {0844.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p295bwm}
}
Pruss, Alexander. A remark on non-existence of an algebra norm for the algebra of continuous functions on a topological space admitting an unbounded continuous function. Studia Mathematica, Tome 113 (1995) pp. 295-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p295bwm/

[00000] [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. | Zbl 0271.46039

[00001] [2] I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418. | Zbl 0033.18701

[00002] [3] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras. Volume I: Algebras and Banach Algebras, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, 1994. | Zbl 0809.46052

[00003] [4] B. Yood, On the nonexistence of norms for some algebras of functions, Studia Math. 111 (1994), 97-101.