Let X be any topological space, and let C(X) be the algebra of all continuous complex-valued functions on X. We prove a conjecture of Yood (1994) to the effect that if there exists an unbounded element of C(X) then C(X) cannot be made into a normed algebra.
@article{bwmeta1.element.bwnjournal-article-smv116i3p295bwm, author = {Alexander Pruss}, title = {A remark on non-existence of an algebra norm for the algebra of continuous functions on a topological space admitting an unbounded continuous function}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {295-297}, zbl = {0844.46014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p295bwm} }
Pruss, Alexander. A remark on non-existence of an algebra norm for the algebra of continuous functions on a topological space admitting an unbounded continuous function. Studia Mathematica, Tome 113 (1995) pp. 295-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p295bwm/
[00000] [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. | Zbl 0271.46039
[00001] [2] I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418. | Zbl 0033.18701
[00002] [3] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras. Volume I: Algebras and Banach Algebras, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, 1994. | Zbl 0809.46052
[00003] [4] B. Yood, On the nonexistence of norms for some algebras of functions, Studia Math. 111 (1994), 97-101.