A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace
Moloney, James ; Weng, Xinlong
Studia Mathematica, Tome 113 (1995), p. 217-223 / Harvested from The Polish Digital Mathematics Library

Let C be a closed, bounded, convex subset of a Hilbert space. Let T : C → C be a demicontinuous pseudocontraction. Then T has a fixed point. This is shown by a combination of topological and combinatorial methods.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216229
@article{bwmeta1.element.bwnjournal-article-smv116i3p217bwm,
     author = {James Moloney and Xinlong Weng},
     title = {A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {217-223},
     zbl = {0840.47047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p217bwm}
}
Moloney, James; Weng, Xinlong. A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace. Studia Mathematica, Tome 113 (1995) pp. 217-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p217bwm/

[00000] [1] F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100-1103. | Zbl 0135.17601

[00001] [2] F. E. Browder, Nonlinear mappings of nonexpansive accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882. | Zbl 0176.45302

[00002] [3] K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374. | Zbl 0288.47047

[00003] [4] W. A. Kirk, Remarks on pseudo-contractive mappings, Proc. Amer. Math. Soc. 25 (1970), 821-823. | Zbl 0203.14603

[00004] [5] R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414. | Zbl 0293.34092

[00005] [6] J. J. Moloney, Some fixed point theorems, Glasnik Mat. 24 (1989), 59-76. | Zbl 0682.47031

[00006] [7] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286. | Zbl 55.0032.04

[00007] [8] X. Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 113 (1991), 727-731. | Zbl 0734.47042