Let C be a closed, bounded, convex subset of a Hilbert space. Let T : C → C be a demicontinuous pseudocontraction. Then T has a fixed point. This is shown by a combination of topological and combinatorial methods.
@article{bwmeta1.element.bwnjournal-article-smv116i3p217bwm, author = {James Moloney and Xinlong Weng}, title = {A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {217-223}, zbl = {0840.47047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p217bwm} }
Moloney, James; Weng, Xinlong. A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace. Studia Mathematica, Tome 113 (1995) pp. 217-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv116i3p217bwm/
[00000] [1] F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100-1103. | Zbl 0135.17601
[00001] [2] F. E. Browder, Nonlinear mappings of nonexpansive accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882. | Zbl 0176.45302
[00002] [3] K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374. | Zbl 0288.47047
[00003] [4] W. A. Kirk, Remarks on pseudo-contractive mappings, Proc. Amer. Math. Soc. 25 (1970), 821-823. | Zbl 0203.14603
[00004] [5] R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414. | Zbl 0293.34092
[00005] [6] J. J. Moloney, Some fixed point theorems, Glasnik Mat. 24 (1989), 59-76. | Zbl 0682.47031
[00006] [7] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286. | Zbl 55.0032.04
[00007] [8] X. Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 113 (1991), 727-731. | Zbl 0734.47042