We give examples of polynomials p(n) orthonormal with respect to a measure μ on ⨍ such that the sequence {p(n,x)} has exponential lower bound for some points x of supp μ. Moreover, the set of such points is dense in the support of μ.
@article{bwmeta1.element.bwnjournal-article-smv116i2p197bwm, author = {Marcin Zygmunt}, title = {Some counterexamples to subexponential growth of orthogonal polynomials}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {197-206}, zbl = {0868.42010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv116i2p197bwm} }
Zygmunt, Marcin. Some counterexamples to subexponential growth of orthogonal polynomials. Studia Mathematica, Tome 113 (1995) pp. 197-206. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv116i2p197bwm/
[00000] [1] D. S. Lubinsky and P. Nevai, Sub-exponential growth of solutions of difference equations, J. London Math. Soc. 46 (1992), 149-160. | Zbl 0723.39003
[00001] [2] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 213 (1979).
[00002] [3] P. Nevai, V. Totik, and J. Zhang, Orthogonal polynomials: their growth relative to their sums, J. Approx. Theory 67 (1991), 215-234. | Zbl 0754.42013
[00003] [4] R. Szwarc, Counterexample to subexponential growth of orthogonal polynomials, Constr. Approx., to appear. | Zbl 0852.42013
[00004] [5] J. Zhang, Relative growth of linear iteration and orthogonal polynomials on several intervals, Linear Algebra Appl. 186 (1993), 97-115. | Zbl 0769.41006