The local versions of Hp(n) spaces at the origin
Lu, Shan ; Yang, Da
Studia Mathematica, Tome 113 (1995), p. 103-131 / Harvested from The Polish Digital Mathematics Library

Let 0 < p ≤ 1 < q < ∞ and α = n(1/p - 1/q). We introduce some new Hardy spaces HK̇qα,p(n) which are the local versions of Hp(n) spaces at the origin. Characterizations of these spaces in terms of atomic and molecular decompositions are established, together with their φ-transform characterizations in M. Frazier and B. Jawerth’s sense. We also prove an interpolation theorem for operators on HK̇qα,p(n) and discuss the HK̇qα,p(n)-boundedness of Calderón-Zygmund operators. Similar results can also be obtained for the non-homogeneous Hardy spaces HKqα,p(n).

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216223
@article{bwmeta1.element.bwnjournal-article-smv116i2p103bwm,
     author = {Shan Lu and Da Yang},
     title = {The local versions of $H^p($\mathbb{R}$^n)$ spaces at the origin},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {103-131},
     zbl = {0935.42012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv116i2p103bwm}
}
Lu, Shan; Yang, Da. The local versions of $H^p(ℝ^n)$ spaces at the origin. Studia Mathematica, Tome 113 (1995) pp. 103-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv116i2p103bwm/

[00000] [1] A. Baernstein II and E. T. Sawyer, Embedding and multiplier theorems for Hp(n), Mem. Amer. Math. Soc. 318 (1985).

[00001] [2] Y. Z. Chen and K. S. Lau, On some new classes of Hardy spaces, J. Funct. Anal. 84 (1989), 255-278. | Zbl 0677.30030

[00002] [3] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078

[00003] [4] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. | Zbl 0551.46018

[00004] [5] M. Frazier and B. Jawerth, The φ-transform and applications to distribution spaces, in: Lecture Notes in Math. 1302, Springer, 1988, 223-246. | Zbl 0648.46038

[00005] [6] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. | Zbl 0716.46031

[00006] [7] J. García-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989), 499-513.

[00007] [8] S. Z. Lu and F. Soria, On the Herz spaces with power weights, in: Fourier Analysis and Partial Differential Equations, J. Garcí a-Cuerva, E. Hernández, F. Soria and J. L. Torrea (eds.), Stud. Adv. Math., CRC Press, Boca Raton, 1995, 227-236. | Zbl 1039.42503

[00008] [9] S. Z. Lu and D. C. Yang, The Littlewood-Paley function and φ-transform characterizations of a new Hardy space HK2 associated with the Herz space, Studia Math. 101 (1992), 285-298. | Zbl 0811.42005

[00009] [10] S. Z. Lu and D. C. Yang, Some new Hardy spaces associated with the Herz spaces and their wavelet characterizations, J. Beijing Normal Univ. (Natural Sci.) 29 (1993), 10-19. | Zbl 0782.42019

[00010] [11] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149. | Zbl 0472.46041

[00011] [12] M. H. Taibleson and G. Weiss, Certain function spaces associated with a.e. convergence of Fourier series, in: Conference in Honor of A. Zygmund, Vol. I, Wadsworth, 1983, 95-113.