On the maximal Fejér operator for double Fourier series of functions in Hardy spaces
Móricz, Ferenc
Studia Mathematica, Tome 113 (1995), p. 89-100 / Harvested from The Polish Digital Mathematics Library

We consider the Fejér (or first arithmetic) means of double Fourier series of functions belonging to one of the Hardy spaces H(1,0)(2), H(0,1)(2), or H(1,1)(2). We prove that the maximal Fejér operator is bounded from H(1,0)(2) or H(0,1)(2) into weak-L1(2), and also bounded from H(1,1)(2) into L1(2). These results extend those by Jessen, Marcinkiewicz, and Zygmund, which involve the function spaces L1log+L(2), L1(log+L)2(2), and Lμ(2) with 0 < μ < 1, respectively. We establish analogous results for the maximal conjugate Fejér operators. On closing, we formulate two conjectures.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216222
@article{bwmeta1.element.bwnjournal-article-smv116i1p89bwm,
     author = {Ferenc M\'oricz},
     title = {On the maximal Fej\'er operator for double Fourier series of functions in Hardy spaces},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {89-100},
     zbl = {0842.47020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv116i1p89bwm}
}
Móricz, Ferenc. On the maximal Fejér operator for double Fourier series of functions in Hardy spaces. Studia Mathematica, Tome 113 (1995) pp. 89-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv116i1p89bwm/

[00000] [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. | Zbl 0647.46057

[00001] [2] R. Fefferman, Some recent developments in Fourier analysis and Hp theory on product domains, II, in: Function Spaces and Applications, Proc. Conf. Lund 1986, Lecture Notes in Math. 1302, Springer, Berlin, 1988, 44-51.

[00002] [3] A. M. Garsia, Martingale Inequalities, Benjamin, New York, 1973.

[00003] [4] D. V. Giang and F. Móricz, Hardy spaces on the plane and double Fourier transforms, J. Fourier Anal. Appl., submitted. | Zbl 1055.42503

[00004] [5] B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234. | Zbl 61.0255.01

[00005] [6] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, ibid. 32 (1939), 112-132. | Zbl 65.0266.01

[00006] [7] F. Móricz, The maximal Fejér operator is bounded from H1() into L1(), Analysis, submitted. | Zbl 0927.47022

[00007] [8] F. Móricz, F. Schipp and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140. | Zbl 0795.42016

[00008] [9] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1959. | Zbl 0085.05601