We abstractly characterize Lipschitz spaces in terms of having a lattice-complete unit ball and a separating family of pure normal states. We then formulate a notion of "measurable metric space" and characterize the corresponding Lipschitz spaces in terms of having a lattice complete unit ball and a separating family of normal states.
@article{bwmeta1.element.bwnjournal-article-smv115i3p277bwm, author = {Nik Weaver}, title = {Nonatomic Lipschitz spaces}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {277-289}, zbl = {0839.46014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i3p277bwm} }
Weaver, Nik. Nonatomic Lipschitz spaces. Studia Mathematica, Tome 113 (1995) pp. 277-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i3p277bwm/
[00000] [1] W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), 359-377. | Zbl 0634.46042
[00001] [2] A. Connes, Compact metric spaces, Fredholm modules, and hyperfiniteness, Ergodic Theory Dynam. Systems 9 (1989), 207-220. | Zbl 0718.46051
[00002] [3] K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math. 21 (1961), 55-66. | Zbl 0101.08901
[00003] [4] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, 1957. | Zbl 0088.32304
[00004] [5] J. A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147-169. | Zbl 0194.43603
[00005] [6] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I, Academic Press, 1983. | Zbl 0518.46046
[00006] [7] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, Vol. I, North-Holland, 1971. | Zbl 0231.46014
[00007] [8] D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963), 1387-1399. | Zbl 0121.10203
[00008] [9] D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272. | Zbl 0121.10204
[00009] [10] L. Waelbroeck, Closed ideals of Lipschitz functions, in: Function Algebras, F. T. Birtel (ed.), Scott, Foresman and Co., 1966, 322-325.
[00010] [11] N. Weaver, Lattices of Lipschitz functions, Pacific J. Math. 164 (1994), 179-193. | Zbl 0797.46007
[00011] [12] N. Weaver, Isometries of noncompact Lipschitz spaces, Canad. Math. Bull., to appear. | Zbl 0831.46007
[00012] [13] N. Weaver, Order-completeness in Lipschitz algebras, J. Funct. Anal., to appear. | Zbl 0922.46022