Let be a sequence of independent identically distributed random operators on a Banach space. We obtain necessary and sufficient conditions for the Abel means of to belong to Hardy and Lipschitz spaces a.s. We also obtain necessary and sufficient conditions on the Fourier coefficients of random Taylor series with bounded martingale coefficients to belong to Lipschitz and Bergman spaces.
@article{bwmeta1.element.bwnjournal-article-smv115i3p261bwm, author = {G. Blower}, title = {Abel means of operator-valued processes}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {261-276}, zbl = {0842.47023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i3p261bwm} }
Blower, G. Abel means of operator-valued processes. Studia Mathematica, Tome 113 (1995) pp. 261-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i3p261bwm/
[00000] [1] G. R. Allan, A. G. O'Farrell and T. J. Ransford, A tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), 537-545. | Zbl 0652.46041
[00001] [2] O. Blasco, Spaces of vector valued analytic functions and applications, in: Geometry of Banach Space, P. F. X. Müller and W. Schachermayer (eds.), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 33-48. | Zbl 0736.46024
[00002] [3] O. Blasco and A. Pełczyński, Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces, Trans. Amer. Math. Soc. 323 (1991), 335-367. | Zbl 0744.46039
[00003] [4] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973. | Zbl 0262.47001
[00004] [5] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163-168. | Zbl 0533.46008
[00005] [6] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, W. Beckner et al. (eds.), Wadsworth, Belmont, Calif., 1983, 270-286.
[00006] [7] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), 403-439. | Zbl 0003.15601
[00007] [8] J. Jakubowski and S. Kwapień, On multiplicative systems of functions, Bull. Acad. Polon. Sci. 27 (1979), 689-694. | Zbl 0493.42036
[00008] [9] J. P. Kahane, Some Random Series of Functions, 2nd ed., Cambridge, 1985. | Zbl 0571.60002
[00009] [10] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. | Zbl 0611.47005
[00010] [11] J. F. C. Kingman, Subadditive ergodic theory, Ann. Probab. 1 (1973), 883-909. | Zbl 0311.60018
[00011] [12] D. Ornstein and L. Sucheston, An operator theorem on convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639. | Zbl 0284.60068
[00012] [13] G. C. Rota, On the maximal ergodic theorem for Abel limits, Proc. Amer. Math. Soc. 14 (1963), 722-723. | Zbl 0117.10501
[00013] [14] N. Th. Varopoulos, Isoperimetric inequalities and Markov chains, J. Funct. Anal. 63 (1985), 215-239. | Zbl 0573.60059