Compressible operators and the continuity of homomorphisms from algebras of operators
Willis, G.
Studia Mathematica, Tome 113 (1995), p. 251-259 / Harvested from The Polish Digital Mathematics Library

The notion of a compressible operator on a Banach space, E, derives from automatic continuity arguments. It is related to the notion of a cartesian Banach space. The compressible operators on E form an ideal in ℬ(E) and the automatic continuity proofs depend on showing that this ideal is large. In particular, it is shown that each weakly compact operator on the James' space, J, is compressible, whence it follows that all homomorphisms from ℬ(J) are continuous.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216211
@article{bwmeta1.element.bwnjournal-article-smv115i3p251bwm,
     author = {G. Willis},
     title = {Compressible operators and the continuity of homomorphisms from algebras of operators},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {251-259},
     zbl = {0839.46046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i3p251bwm}
}
Willis, G. Compressible operators and the continuity of homomorphisms from algebras of operators. Studia Mathematica, Tome 113 (1995) pp. 251-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i3p251bwm/

[00000] [Da] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Univ. Press, in preparation.

[00001] [D,L&W] H. G. Dales, R. J. Loy and G. A. Willis, Homomorphisms and derivations from ℬ(E), J. Funct. Anal., to appear. | Zbl 0815.46063

[00002] [Go] W. T. Gowers, A solution to the Schroeder-Bernstein problem for Banach spaces, preprint.

[00003] [GM1] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. | Zbl 0827.46008

[00004] [GM2] W. T. Gowers and B. Maurey, Banach spaces with small spaces of operators, preprint. | Zbl 0876.46006

[00005] [Ja] R. C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1950), 174-177.

[00006] [BJo] B. E. Johnson, Continuity of homomorphisms from algebras of operators, J. London Math. Soc. 42 (1967), 537-541. | Zbl 0152.32805

[00007] [WJo1] W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337-345. | Zbl 0236.47045

[00008] [WJo2] W. B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, ibid. 13 (1972), 301-310.

[00009] [L&W] R. J. Loy and G. A. Willis, Continuity of derivations on ℬ(E) for certain Banach spaces E, J. London Math. Soc. (2) 40 (1989), 327-346. | Zbl 0651.47035

[00010] [Og] C. Ogden, Homomorphisms from B(Cωη), J. London Math. Soc., to appear.

[00011] [Re] C. J. Read, Discontinuous derivations on the algebra of bounded operators on a Banach space, ibid. (2) 40 (1989), 305-326.