The symbol calculus on the upper half plane is studied from the viewpoint of the Kirillov theory of orbits. The main result is the -estimates for Fuchs type pseudodifferential operators.
@article{bwmeta1.element.bwnjournal-article-smv115i3p207bwm, author = {Qihong Fan}, title = {Symbol calculus on the affine group "ax + b"}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {207-217}, zbl = {0973.43501}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i3p207bwm} }
Fan, Qihong. Symbol calculus on the affine group "ax + b". Studia Mathematica, Tome 113 (1995) pp. 207-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i3p207bwm/
[00000] [B] R. Beals, and Hölder estimates for pseudodifferential operators: Sufficient conditions, Ann. Inst. Fourier (Grenoble) 29 (3) (1979), 239-260. | Zbl 0387.35065
[00001] [CM] R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). | Zbl 0483.35082
[00002] [CW] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
[00003] [H] R. Howe, Quantum mechanics and partial differential equations, J. Funct. Anal. 38 (1980), 188-254. | Zbl 0449.35002
[00004] [K] A. A. Kirillov, Elements of the Theory of Representations, Springer, Berlin, 1976. | Zbl 0342.22001
[00005] [U] A. Unterberger, The calculus of pseudodifferential operators of Fuchs type, Comm. Partial Differential Equations 9 (1984), 1179-1236. | Zbl 0561.35081
[00006] [UU] A. Unterberger and H. Upmeier, Pseudodifferential analysis on symmetric cones, preprint, 1993.