Loading [MathJax]/extensions/MathZoom.js
Topologies on the space of ideals of a Banach algebra
Beckhoff, Ferdinand
Studia Mathematica, Tome 113 (1995), p. 189-205 / Harvested from The Polish Digital Mathematics Library

Some topologies on the space Id(A) of two-sided and closed ideals of a Banach algebra are introduced and investigated. One of the topologies, namely τ, coincides with the so-called strong topology if A is a C*-algebra. We prove that for a separable Banach algebra τ coincides with a weaker topology when restricted to the space Min-Primal(A) of minimal closed primal ideals and that Min-Primal(A) is a Polish space if τ is Hausdorff; this generalizes results from [1] and [5]. All subspaces of Id(A) with the relative hull kernel topology turn out to be separable Lindelöf spaces if A is separable, which improves results from [14].

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216207
@article{bwmeta1.element.bwnjournal-article-smv115i2p189bwm,
     author = {Ferdinand Beckhoff},
     title = {Topologies on the space of ideals of a Banach algebra},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {189-205},
     zbl = {0836.46038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p189bwm}
}
Beckhoff, Ferdinand. Topologies on the space of ideals of a Banach algebra. Studia Mathematica, Tome 113 (1995) pp. 189-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p189bwm/

[00000] [1] R. J. Archbold, Topologies for primal ideals, J. London Math. Soc. (2) 36 (1987), 524-542. | Zbl 0613.46048

[00001] [2] R. J. Archbold and D. W. B. Somerset, Quasi-standard C*-algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 349-360. | Zbl 0731.46034

[00002] [3] F. Beckhoff, The minimal primal ideal space of a C*-algebra and local compactness, Canad. Math. Bull. (4) 34 (1991), 440-446. | Zbl 0696.46041

[00003] [4] F. Beckhoff, The minimal primal ideal space and AF-algebras, Arch. Math. (Basel) 59 (1992), 276-282. | Zbl 0732.46036

[00004] [5] F. Beckhoff, The minimal primal ideal space of a separable C*-algebra, Michigan Math. J. 40 (1993), 477-492. | Zbl 0814.46042

[00005] [6] F. Beckhoff, The adjunction of a unit and the minimal primal ideal space, in: Proc. 2nd Internat. Conf. in Funct. Anal. and Approx. Theory, Acquafredda di Maratea, September 14-19, 1992, Rend. Circ. Mat. Palermo (2) Suppl. 33 (1993), 201-209. | Zbl 0812.46050

[00006] [7] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. | Zbl 0271.46039

[00007] [8] H. G. Dales, On norms on algebras, in: Proc. Conf. Canberra 1989, Centre for Mathematical Analysis, Australian National University, Vol. 21, 1989, 61-96.

[00008] [9] R. S. Doran and V. A. Belfi, Characterizations of C*-algebras, Marcel Dekker, 1986. | Zbl 0597.46056

[00009] [10] R. A. Hirschfeld and W. Żelazko, On spectral norm Banach algebras, Bull. Acad. Polon. Sci. 16 (1968), 195-199. | Zbl 0159.18403

[00010] [11] W. Rudin, Fourier Analysis on Groups, Interscience, 1962.

[00011] [12] W. Rudin, Functional Analysis, McGraw-Hill, 1973.

[00012] [13] S. Sakai, C*-algebras and W*-algebras, Springer, 1971.

[00013] [14] D. W. B. Somerset, Minimal primal ideals in Banach algebras, Math. Proc. Cambridge Philos. Soc. 115 (1994), 39-52.

[00014] [15] A. Wilansky, Between T1 and T2, Amer. Math. Monthly 74 (1967), 261-266.