Some topologies on the space Id(A) of two-sided and closed ideals of a Banach algebra are introduced and investigated. One of the topologies, namely , coincides with the so-called strong topology if A is a C*-algebra. We prove that for a separable Banach algebra coincides with a weaker topology when restricted to the space Min-Primal(A) of minimal closed primal ideals and that Min-Primal(A) is a Polish space if is Hausdorff; this generalizes results from [1] and [5]. All subspaces of Id(A) with the relative hull kernel topology turn out to be separable Lindelöf spaces if A is separable, which improves results from [14].
@article{bwmeta1.element.bwnjournal-article-smv115i2p189bwm, author = {Ferdinand Beckhoff}, title = {Topologies on the space of ideals of a Banach algebra}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {189-205}, zbl = {0836.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p189bwm} }
Beckhoff, Ferdinand. Topologies on the space of ideals of a Banach algebra. Studia Mathematica, Tome 113 (1995) pp. 189-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p189bwm/
[00000] [1] R. J. Archbold, Topologies for primal ideals, J. London Math. Soc. (2) 36 (1987), 524-542. | Zbl 0613.46048
[00001] [2] R. J. Archbold and D. W. B. Somerset, Quasi-standard C*-algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 349-360. | Zbl 0731.46034
[00002] [3] F. Beckhoff, The minimal primal ideal space of a C*-algebra and local compactness, Canad. Math. Bull. (4) 34 (1991), 440-446. | Zbl 0696.46041
[00003] [4] F. Beckhoff, The minimal primal ideal space and AF-algebras, Arch. Math. (Basel) 59 (1992), 276-282. | Zbl 0732.46036
[00004] [5] F. Beckhoff, The minimal primal ideal space of a separable C*-algebra, Michigan Math. J. 40 (1993), 477-492. | Zbl 0814.46042
[00005] [6] F. Beckhoff, The adjunction of a unit and the minimal primal ideal space, in: Proc. 2nd Internat. Conf. in Funct. Anal. and Approx. Theory, Acquafredda di Maratea, September 14-19, 1992, Rend. Circ. Mat. Palermo (2) Suppl. 33 (1993), 201-209. | Zbl 0812.46050
[00006] [7] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. | Zbl 0271.46039
[00007] [8] H. G. Dales, On norms on algebras, in: Proc. Conf. Canberra 1989, Centre for Mathematical Analysis, Australian National University, Vol. 21, 1989, 61-96.
[00008] [9] R. S. Doran and V. A. Belfi, Characterizations of C*-algebras, Marcel Dekker, 1986. | Zbl 0597.46056
[00009] [10] R. A. Hirschfeld and W. Żelazko, On spectral norm Banach algebras, Bull. Acad. Polon. Sci. 16 (1968), 195-199. | Zbl 0159.18403
[00010] [11] W. Rudin, Fourier Analysis on Groups, Interscience, 1962.
[00011] [12] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
[00012] [13] S. Sakai, C*-algebras and W*-algebras, Springer, 1971.
[00013] [14] D. W. B. Somerset, Minimal primal ideals in Banach algebras, Math. Proc. Cambridge Philos. Soc. 115 (1994), 39-52.
[00014] [15] A. Wilansky, Between and , Amer. Math. Monthly 74 (1967), 261-266.