This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.
@article{bwmeta1.element.bwnjournal-article-smv115i2p151bwm, author = {David Edmunds and Petr Gurka and Bohum\'\i r Opic}, title = {Double exponential integrability, Bessel potentials and embedding theorems}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {151-181}, zbl = {0829.47024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p151bwm} }
Edmunds, David; Gurka, Petr; Opic, Bohumír. Double exponential integrability, Bessel potentials and embedding theorems. Studia Mathematica, Tome 113 (1995) pp. 151-181. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p151bwm/
[00000] [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[00001] [2] C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980). | Zbl 0456.46028
[00002] [3] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, 1988. | Zbl 0647.46057
[00003] [4] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), 773-789. | Zbl 0437.35071
[00004] [5] D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J. (1995), to appear. | Zbl 0826.47021
[00005] [6] D. E. Edmunds and M. Krbec, Two limiting cases of Sobolev imbeddings, preprint no. 89, Math. Inst. Czech Acad. Sci., Prague, 1994, 8 pp. | Zbl 0835.46027
[00006] [7] W. D. Evans, B. Opic and L. Pick, Interpolation of operators on scales of generalized Lorentz-Zygmund spaces, preprint no. 99, Math. Inst. Czech Acad. Sci., Prague, 1995, 57 pp. | Zbl 0865.46016
[00007] [8] N. Fusco, P. L. Lions and C. Sbordone, Some remarks on Sobolev embeddings in borderline cases, preprint no. 25, Università degli Studi di Napoli "Federico II", 1993, 7 pp.
[00008] [9] A. Kufner, O. John and S. Fučík, Function Spaces, Academia, Prague, 1977.
[00009] [10] G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1 (1951), 411-429. | Zbl 0043.11302
[00010] [11] F. J. Martín-Reyes and E. T. Sawyer, Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc. 106 (1989) 727-733. | Zbl 0704.42018
[00011] [12] R. O'Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129-142.
[00012] [13] E. T. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158. | Zbl 0705.42014
[00013] [14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501
[00014] [15] V. D. Stepanov, Weighted inequalities for a class of Volterra convolution operators, J. London Math. Soc. 45 (1992), 232-242. | Zbl 0703.42011
[00015] [16] V. D. Stepanov, The weighted Hardy's inequality for non-increasing functions, Trans. Amer. Math. Soc. 338 (1993), 173-186. | Zbl 0786.26015
[00016] [17] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. | Zbl 0387.46033
[00017] [18] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484. | Zbl 0163.36402
[00018] [19] W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Math. 120, Springer, Berlin, 1989.