Chaotic behavior of infinitely divisible processes
Cambanis, S. ; Podgórski, K. ; Weron, A.
Studia Mathematica, Tome 113 (1995), p. 109-127 / Harvested from The Polish Digital Mathematics Library

The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216202
@article{bwmeta1.element.bwnjournal-article-smv115i2p109bwm,
     author = {S. Cambanis and K. Podg\'orski and A. Weron},
     title = {Chaotic behavior of infinitely divisible processes},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {109-127},
     zbl = {0835.60008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p109bwm}
}
Cambanis, S.; Podgórski, K.; Weron, A. Chaotic behavior of infinitely divisible processes. Studia Mathematica, Tome 113 (1995) pp. 109-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p109bwm/

[00000] R. J. Adler, S. Cambanis and G. Samorodnitsky (1990), On stable Markov processes, Stochastic Process. Appl. 34, 1-17. | Zbl 0692.60054

[00001] R. M. Blumenthal (1957), An extended Markov property, Trans. Amer. Math. Soc. 85, 52-72. | Zbl 0084.13602

[00002] S. Cambanis, C. D. Hardin and A. Weron (1987), Ergodic properties of stationary stable processes, Stochastic Process. Appl. 24, 1-18. | Zbl 0612.60034

[00003] S. Cambanis and A. Ławniczak (1989), Ergodicity and mixing of infinitely divisible processes, unpublished preprint.

[00004] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai (1982), Ergodic Theory, Springer, Berlin. | Zbl 0493.28007

[00005] S. V. Fomin (1950), Normal dynamical systems, Ukrain. Mat. Zh. 2, 25-47 (in Russian).

[00006] U. Grenander (1950), Stochastic processes and statistical inference, Ark. Mat. 1, 195-277. | Zbl 0041.45807

[00007] A. Gross (1994), Some mixing conditions for stationary symmetric stable stochastic processes, Stochastic Process. Appl. 51, 277-285. | Zbl 0813.60039

[00008] A. Gross and J. B. Robertson (1993), Ergodic properties of random measures on stationary sequences of sets, ibid. 46, 249-265. | Zbl 0786.60044

[00009] M. Hernández and C. Houdré (1993), Disjointness results for some classes of stable processes, Studia Math. 105 235-252. | Zbl 0810.60044

[00010] P. Kokoszka and K. Podgórski (1992), Ergodicity and weak mixing of semistable processes, Probab. Math. Statist. 13, 239-244. | Zbl 0781.60029

[00011] A. Lasota and M. C. Mackey (1994), Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer, New York. | Zbl 0784.58005

[00012] V. P. Leonov (1960), The use of the characteristic functional and semiinvariants in the theory of stationary processes, Dokl. Akad. Nauk SSSR 133, 523-526 (in Russian).

[00013] G. Maruyama (1949), The harmonic analysis of stationary stochastic processes, Mem. Fac. Sci. Kyusyu Ser. Mat. IV 1, 49-106. | Zbl 0045.40602

[00014] G. Maruyama (1970), Infinitely divisible processes, Probab. Theory Appl. 15, 3-23. | Zbl 0268.60036

[00015] J. Musielak (1983), Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, New York. D. Newton (1968), On a principal factor system of a normal dynamical system, J. London Math. Soc. 43, 275-279. | Zbl 0169.20601

[00016] K. Podgórski (1992), A note on ergodic symmetric stable processes, Stochastic Process. Appl. 43, 355-362. | Zbl 0758.60036

[00017] K. Podgórski and A. Weron (1991), Characterization of ergodic stable processes via the dynamical functional, in: Stable Processes and Related Topics, S. Cambanis et al. (eds.), Birkhäuser, Boston, 317-328. | Zbl 0723.60034

[00018] B. S. Rajput and J. Rosiński (1989), Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82, 451-487. | Zbl 0659.60078

[00019] V. A. Rokhlin (1964), Exact endomorphisms of Lebesgue space, Amer. Math. Soc. Transl. (2) 39, 1-36. | Zbl 0154.15703

[00020] P. Walters (1982), An Introduction to Ergodic Theory, Springer, Berlin. | Zbl 0475.28009

[00021] A. Weron (1985), Harmonizable stable processes on groups: spectral, ergodic and interpolation properties, Z. Wahrsch. Verw. Gebiete 68, 473-491. | Zbl 0537.60008