We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.
@article{bwmeta1.element.bwnjournal-article-smv115i2p105bwm, author = {C. Fong and G. Lumer and E. Nordgren and H. Radjavi and P. Rosenthal}, title = {Local polynomials are polynomials}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {105-107}, zbl = {0844.47009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p105bwm} }
Fong, C.; Lumer, G.; Nordgren, E.; Radjavi, H.; Rosenthal, P. Local polynomials are polynomials. Studia Mathematica, Tome 113 (1995) pp. 105-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i2p105bwm/