A lifting theorem for locally convex subspaces of L0
Faber, R.
Studia Mathematica, Tome 113 (1995), p. 73-85 / Harvested from The Polish Digital Mathematics Library

We prove that for every closed locally convex subspace E of L0 and for any continuous linear operator T from L0 to L0/E there is a continuous linear operator S from L0 to L0 such that T = QS where Q is the quotient map from L0 to L0/E.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216199
@article{bwmeta1.element.bwnjournal-article-smv115i1p73bwm,
     author = {R. Faber},
     title = {A lifting theorem for locally convex subspaces of $L\_0$
            },
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {73-85},
     zbl = {0829.46054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i1p73bwm}
}
Faber, R. A lifting theorem for locally convex subspaces of $L_0$
            . Studia Mathematica, Tome 113 (1995) pp. 73-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i1p73bwm/

[00000] [1] T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), No. 10 | Zbl 0060.26503

[00001] [2] N. J. Kalton and N. T. Peck, Quotients of Lp for 0≤ p<1, Studia Math. 64 (1979), 65-75. | Zbl 0393.46007

[00002] [3] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, Cambridge Univ. Press, Cambridge, 1984.

[00003] [4] S. Kwapień, On the form of a linear operator in the space of all measurable functions, Bull. Acad. Polon. Sci. 21 (1973), 951-954. | Zbl 0271.60004

[00004] [5] R. E. A. C. Paley and A. Zygmund, On some series of functions III, Proc. Cambridge Philos. Soc. 28 (1932), 190-205. | Zbl 0006.19802

[00005] [6] N. T. Peck and T. Starbird, L0 is ω-transitive, Proc. Amer. Math. Soc. 83 (1981), 700-704.

[00006] [7] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. 5 (1957), 471-473. | Zbl 0079.12602

[00007] [8] P. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976).