We prove that for every closed locally convex subspace E of and for any continuous linear operator T from to there is a continuous linear operator S from to such that T = QS where Q is the quotient map from to .
@article{bwmeta1.element.bwnjournal-article-smv115i1p73bwm, author = {R. Faber}, title = {A lifting theorem for locally convex subspaces of $L\_0$ }, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {73-85}, zbl = {0829.46054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i1p73bwm} }
Faber, R. A lifting theorem for locally convex subspaces of $L_0$ . Studia Mathematica, Tome 113 (1995) pp. 73-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i1p73bwm/
[00000] [1] T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), No. 10 | Zbl 0060.26503
[00001] [2] N. J. Kalton and N. T. Peck, Quotients of for 0≤ p<1, Studia Math. 64 (1979), 65-75. | Zbl 0393.46007
[00002] [3] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, Cambridge Univ. Press, Cambridge, 1984.
[00003] [4] S. Kwapień, On the form of a linear operator in the space of all measurable functions, Bull. Acad. Polon. Sci. 21 (1973), 951-954. | Zbl 0271.60004
[00004] [5] R. E. A. C. Paley and A. Zygmund, On some series of functions III, Proc. Cambridge Philos. Soc. 28 (1932), 190-205. | Zbl 0006.19802
[00005] [6] N. T. Peck and T. Starbird, is ω-transitive, Proc. Amer. Math. Soc. 83 (1981), 700-704.
[00006] [7] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. 5 (1957), 471-473. | Zbl 0079.12602
[00007] [8] P. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976).