We consider a semigroup acting on real-valued functions defined in a Hilbert space H, arising as a transition semigroup of a given stochastic process in H. We find sufficient conditions for analyticity of the semigroup in the space, where μ is a gaussian measure in H, intrinsically related to the process. We show that the infinitesimal generator of the semigroup is associated with a bilinear closed coercive form in . A closability criterion for such forms is presented. Examples are also given.
@article{bwmeta1.element.bwnjournal-article-smv115i1p53bwm, author = {Marco Fuhrman}, title = {Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {53-71}, zbl = {0830.47033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i1p53bwm} }
Fuhrman, Marco. Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces. Studia Mathematica, Tome 113 (1995) pp. 53-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i1p53bwm/
[00000] [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, 1976. | Zbl 0344.46071
[00001] [2] S. Cerrai, A Hille-Yosida theorem for weakly continuous semigroups, preprint, Scuola Normale Superiore di Pisa, 1993.
[00002] [3] S. Cerrai and F. Gozzi, Strong solutions of Cauchy problems associated to weakly continuous semigroups, preprint, Scuola Normale Superiore di Pisa, 1993. | Zbl 0822.47040
[00003] [4] G. Da Prato and P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. 54 (1975), 305-387. | Zbl 0315.47009
[00004] [5] G. Da Prato and J. Zabczyk, Regular densities of invariant measures in Hilbert spaces, preprint, Scuola Normale Superiore di Pisa, 1993.
[00005] [6] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 44, Cambridge University Press, 1992. | Zbl 0761.60052
[00006] [7] M. Fuhrman, Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces, preprint, Dipartimento di Matematica, Politecnico di Milano, n. 105/p, ottobre 1993.
[00007] [8] Z. M. Ma and M. Röckner, Dirichlet Forms, Springer, 1992.
[00008] [9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
[00009] [10] B. Schmuland, Non-symmetric Ornstein-Uhlenbeck processes in Banach space via Dirichlet forms, Canad. J. Math. 45 (1993), 1324-1338. | Zbl 0801.31003
[00010] [11] A. Yagi, Coïncidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 173-176. | Zbl 0563.46042
[00011] [12] J. Zabczyk, Symmetric solutions of semilinear stochastic equations, in: Stochastic Partial Differential Equations and Applications, G. Da Prato and L. Tubaro (eds.), Lecture Notes in Math. 1390, Springer, 1989, 237-256.