This article deals with bounding sets in real Banach spaces E with respect to the functions in A(E), the algebra of real analytic functions on E, as well as to various subalgebras of A(E). These bounding sets are shown to be relatively weakly compact and the question whether they are always relatively compact in the norm topology is reduced to the study of the action on the set of unit vectors in of the corresponding functions in . These results are achieved by studying the homomorphisms on the function algebras in question, an idea that is also reversed in order to obtain new results for the set of homomorphisms on these algebras.
@article{bwmeta1.element.bwnjournal-article-smv115i1p23bwm, author = {Peter Bistr\"om and Jes\'us Jaramillo and Mikael Lindstr\"om}, title = {Algebras of real analytic functions: Homomorphisms and bounding sets}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {23-37}, zbl = {0829.46013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv115i1p23bwm} }
Biström, Peter; Jaramillo, Jesús; Lindström, Mikael. Algebras of real analytic functions: Homomorphisms and bounding sets. Studia Mathematica, Tome 113 (1995) pp. 23-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv115i1p23bwm/
[00000] [1] R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. | Zbl 0536.46015
[00001] [2] P. Biström, S. Bjon and M. Lindström, Function algebras on which homomorphisms are point evaluations on sequences, Manuscripta Math. 73 (1991), 179-185. | Zbl 0764.46048
[00002] [3] P. Biström and J. A. Jaramillo, -bounding sets and compactness, Math. Scand. 75 (1994), 82-86.
[00003] [4] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77-112. | Zbl 0214.37703
[00004] [5] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58. | Zbl 0601.47019
[00005] [6] T. K. Carne, B. Cole and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659. | Zbl 0704.46033
[00006] [7] J. Castillo and C. Sánchez, Weakly-p-compact, p-Banach-Saks and super-reflexive Banach spaces, J. Math. Anal. Appl., to appear. | Zbl 0878.46009
[00007] [8] K. Ciesielski and R. Pol, A weakly Lindelöf function space C(K) without any continuous injection into , Bull. Polish Acad. Sci. Math. 32 (1984), 681-688. | Zbl 0571.54014
[00008] [9] A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351-356. | Zbl 0683.46037
[00009] [10] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, 1984.
[00010] [11] K. Floret, Weakly Compact Sets, Lecture Notes in Math. 801, Springer, 1980. | Zbl 0437.46006
[00011] [12] P. Galindo, D. García, M. Maestre and J. Mujica, Extension of multilinear mappings on Banach spaces, Studia Math. 108 (1994), 55-76. | Zbl 0852.46004
[00012] [13] M. Garrido, J. Gómez and J. A. Jaramillo, Homomorphisms on function algebras, Extracta Math. 7 (1992), 46-52. | Zbl 0808.46035
[00013] [14] T. Husain, Multiplicative Functionals on Topological Algebras, Research Notes in Math. 85, Pitman, 1983. | Zbl 0514.46030
[00014] [15] J. A. Jaramillo and A. Prieto, The weak-polynomial convergence on a Banach space, Proc. Amer. Math. Soc. 118 (1993), 463-468. | Zbl 0795.46042
[00015] [16] H. Jarchow, Locally Convex Spaces, Teubner, 1981. | Zbl 0466.46001
[00016] [17] K. John, H. Toruńczyk and V. Zizler, Uniformly smooth partitions of unity on superreflexive Banach spaces, Studia Math. 70 (1981), 129-137. | Zbl 0485.46006
[00017] [18] B. Josefson, Bounding subsets of , J. Math. Pures Appl. 57 (1978), 397-421. | Zbl 0403.46011
[00018] [19] A. Kriegl and P. Michor, More smoothly real compact spaces, Proc. Amer. Math. Soc. 117 (1993), 467-471. | Zbl 0813.46026
[00019] [20] J. G. Llavona, Approximation of Continuously Differentiable Functions, North-Holland, 1986. | Zbl 0642.41001
[00020] [21] J. Mujica, Complex homomorphisms of the algebras of holomorphic functions on Fréchet spaces, Math. Ann. 241 (1979), 73-82. | Zbl 0386.46023
[00021] [22] S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 1047-1142.
[00022] [23] T. Schlumprecht, A limited set that is not bounding, Proc. Roy. Irish Acad. 90A (1990), 125-129. | Zbl 0749.46030