For random variables , where is a sequence of symmetric, independent, identically distributed random variables such that is a concave function we give estimates from above and from below for the tail and moments of S. The estimates are exact up to a constant depending only on the distribution of ξ. They extend results of S. J. Montgomery-Smith [MS], M. Ledoux and M. Talagrand [LT, Chapter 4.1] and P. Hitczenko [H] for the Rademacher sequence.
@article{bwmeta1.element.bwnjournal-article-smv114i3p303bwm, author = {E. Gluskin and S. Kwapie\'n}, title = {Tail and moment estimates for sums of independent random variables with logarithmically concave tails}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {303-309}, zbl = {0834.60050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p303bwm} }
Gluskin, E.; Kwapień, S. Tail and moment estimates for sums of independent random variables with logarithmically concave tails. Studia Mathematica, Tome 113 (1995) pp. 303-309. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p303bwm/
[00000] [B] E. Berger, Majorization, exponential inequalities and almost sure behavior of vector valued random variables, Ann. Probab. 19 (1990), 1206-1226. | Zbl 0757.60002
[00001] [H] P. Hitczenko, Domination inequality for martingale transforms of Rademacher sequences, Israel J. Math. 84 (1993), 161-178. | Zbl 0781.60037
[00002] [HK] P. Hitczenko and S. Kwapień, On the Rademacher series, in: Probability in Banach Spaces, Proc. 9th Internat. Conf., Sandbjerg, 1993, Birkhäuser, 1994, 31-36. | Zbl 0822.60013
[00003] [K] J.-P. Kahane, Some Random Series of Functions, Heath, 1968. | Zbl 0192.53801
[00004] [KR] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
[00005] [KW] S. Kwapień and W. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, 1992. | Zbl 0751.60035
[00006] [LT] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991. | Zbl 0748.60004
[00007] [MO] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979. | Zbl 0437.26007
[00008] [MS] S. J. Montgomery-Smith, The distribution of Rademacher sums, Proc. Amer. Math. Soc. 109 (1990), 517-522. | Zbl 0696.60013