Tail and moment estimates for sums of independent random variables with logarithmically concave tails
Gluskin, E. ; Kwapień, S.
Studia Mathematica, Tome 113 (1995), p. 303-309 / Harvested from The Polish Digital Mathematics Library

For random variables S=i=1αiξi, where (ξi) is a sequence of symmetric, independent, identically distributed random variables such that lnP(|ξi|t) is a concave function we give estimates from above and from below for the tail and moments of S. The estimates are exact up to a constant depending only on the distribution of ξ. They extend results of S. J. Montgomery-Smith [MS], M. Ledoux and M. Talagrand [LT, Chapter 4.1] and P. Hitczenko [H] for the Rademacher sequence.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216194
@article{bwmeta1.element.bwnjournal-article-smv114i3p303bwm,
     author = {E. Gluskin and S. Kwapie\'n},
     title = {Tail and moment estimates for sums of independent random variables with logarithmically concave tails},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {303-309},
     zbl = {0834.60050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p303bwm}
}
Gluskin, E.; Kwapień, S. Tail and moment estimates for sums of independent random variables with logarithmically concave tails. Studia Mathematica, Tome 113 (1995) pp. 303-309. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p303bwm/

[00000] [B] E. Berger, Majorization, exponential inequalities and almost sure behavior of vector valued random variables, Ann. Probab. 19 (1990), 1206-1226. | Zbl 0757.60002

[00001] [H] P. Hitczenko, Domination inequality for martingale transforms of Rademacher sequences, Israel J. Math. 84 (1993), 161-178. | Zbl 0781.60037

[00002] [HK] P. Hitczenko and S. Kwapień, On the Rademacher series, in: Probability in Banach Spaces, Proc. 9th Internat. Conf., Sandbjerg, 1993, Birkhäuser, 1994, 31-36. | Zbl 0822.60013

[00003] [K] J.-P. Kahane, Some Random Series of Functions, Heath, 1968. | Zbl 0192.53801

[00004] [KR] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.

[00005] [KW] S. Kwapień and W. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, 1992. | Zbl 0751.60035

[00006] [LT] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991. | Zbl 0748.60004

[00007] [MO] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979. | Zbl 0437.26007

[00008] [MS] S. J. Montgomery-Smith, The distribution of Rademacher sums, Proc. Amer. Math. Soc. 109 (1990), 517-522. | Zbl 0696.60013