Let X be a real Banach space and G ⊂ X open and bounded. Assume that one of the following conditions is satisfied: (i) X* is uniformly convex and T:Ḡ→ X is demicontinuous and accretive; (ii) T:Ḡ→ X is continuous and accretive; (iii) T:X ⊃ D(T)→ X is m-accretive and Ḡ ⊂ D(T). Assume, further, that M ⊂ X is pathwise connected and such that M ∩ TG ≠ ∅ and . Then . If, moreover, Case (i) or (ii) holds and T is of type , or Case (iii) holds and T is of type , then M ⊂ TG. Various results of Morales, Reich and Torrejón, and the author are improved and/or extended.
@article{bwmeta1.element.bwnjournal-article-smv114i3p261bwm, author = {Athanassios Kartsatos}, title = {Sets in the ranges of nonlinear accretive operators in Banach spaces}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {261-273}, zbl = {0830.47048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p261bwm} }
Kartsatos, Athanassios. Sets in the ranges of nonlinear accretive operators in Banach spaces. Studia Mathematica, Tome 113 (1995) pp. 261-273. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p261bwm/
[00000] [1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1975.
[00001] [2] F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math. 18, Part 2, Amer. Math. Soc., Providence, 1976. | Zbl 0327.47022
[00002] [3] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Boston, 1990. | Zbl 0712.47043
[00003] [4] K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374. | Zbl 0288.47047
[00004] [5] J. Gatica and W. A. Kirk, Fixed point theorems for Lipschitzian pseudo-contractive mappings, Proc. Amer. Math. Soc. 36 (1972), 111-115. | Zbl 0254.47076
[00005] [6] J. Gatica and W. A. Kirk, Fixed point theorems for contraction mappings with applications to nonexpansive and pseudo-contractive mappings, Rocky Mountain J. Math. 4 (1974), 69-79. | Zbl 0277.47034
[00006] [7] D. R. Kaplan and A. G. Kartsatos, Ranges of sums and the control of nonlinear evolutions with pre-assigned responses, J. Optim. Theory Appl. 81 (1994), 121-141. | Zbl 0804.93003
[00007] [8] A. G. Kartsatos, Some mapping theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 82 (1981), 169-183. | Zbl 0466.47035
[00008] [9] A. G. Kartsatos, Zeros of demicontinuous accretive operators in reflexive Banach spaces, J. Integral Equations 8 (1985), 175-184. | Zbl 0584.47054
[00009] [10] A. G. Kartsatos, On the solvability of abstract operator equations involving compact perturbations of m-accretive operators, Nonlinear Anal. 11 (1987), 997-1004. | Zbl 0638.47052
[00010] [11] A. G. Kartsatos, On compact perturbations and compact resolvents of nonlinear m-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 119 (1993), 1189-1199. | Zbl 0809.47047
[00011] [12] A. G. Kartsatos, Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces, in: Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, 1992, Walter de Gruyter, New York, to appear. | Zbl 0849.47027
[00012] [13] A. G. Kartsatos, On the construction of methods of lines for functional evolutions in general Banach spaces, Nonlinear Anal., to appear. | Zbl 0864.47029
[00013] [14] A. G. Kartsatos, Existence of zeros and asymptotic behaviour of resolvents of maximal monotone operators in reflexive Banach spaces, to appear. | Zbl 0902.47052
[00014] [15] A. G. Kartsatos and R. D. Mabry, Controlling the space with pre-assigned responses, J. Optim. Appl. Theory 54 (1987), 517-540. | Zbl 0596.49026
[00015] [16] W. A. Kirk, Fixed point theorems for nonexpansive mappings satisfying certain boundary conditions, Proc. Amer. Math. Soc. 50 (1975), 143-149. | Zbl 0322.47036
[00016] [17] W. A. Kirk and R. Schöneberg, Some results on pseudo-contractive mappings, Pacific J. Math. 71 (1977), 89-100. | Zbl 0362.47023
[00017] [18] W. A. Kirk and R. Schöneberg, Zeros of m-accretive operators in Banach spaces, Israel J. Math. 35 (1980), 1-8. | Zbl 0435.47055
[00018] [19] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford, 1981. | Zbl 0456.34002
[00019] [20] C. Morales, Nonlinear equations involving m-accretive operators, J. Math. Anal. Appl. 97 (1983), 329-336. | Zbl 0542.47042
[00020] [21] C. Morales, Existence theorems for demicontinuous accretive operators in Banach spaces, Houston J. Math. 10 (1984), 535-543. | Zbl 0579.47058
[00021] [22] C. Morales, Zeros for accretive operators satisfying certain boundary conditions, J. Math. Anal. Appl. 105 (1985), 167-175. | Zbl 0579.47057
[00022] [23] M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497-511. | Zbl 0043.17801
[00023] [24] S. Reich and R. Torrejón, Zeros of accretive operators, Comment. Math. Univ. Carolin. 21 (1980), 619-625. | Zbl 0444.47043
[00024] [25] R. Torrejón, Some remarks on nonlinear functional equations, in: Contemp. Math. 18, Amer. Math. Soc., 1983, 217-246. | Zbl 0518.47042