Sets in the ranges of nonlinear accretive operators in Banach spaces
Kartsatos, Athanassios
Studia Mathematica, Tome 113 (1995), p. 261-273 / Harvested from The Polish Digital Mathematics Library

Let X be a real Banach space and G ⊂ X open and bounded. Assume that one of the following conditions is satisfied: (i) X* is uniformly convex and T:Ḡ→ X is demicontinuous and accretive; (ii) T:Ḡ→ X is continuous and accretive; (iii) T:X ⊃ D(T)→ X is m-accretive and Ḡ ⊂ D(T). Assume, further, that M ⊂ X is pathwise connected and such that M ∩ TG ≠ ∅ and MT(G)¯=. Then MTG¯. If, moreover, Case (i) or (ii) holds and T is of type (S1), or Case (iii) holds and T is of type (S2), then M ⊂ TG. Various results of Morales, Reich and Torrejón, and the author are improved and/or extended.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216191
@article{bwmeta1.element.bwnjournal-article-smv114i3p261bwm,
     author = {Athanassios Kartsatos},
     title = {Sets in the ranges of nonlinear accretive operators in Banach spaces},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {261-273},
     zbl = {0830.47048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p261bwm}
}
Kartsatos, Athanassios. Sets in the ranges of nonlinear accretive operators in Banach spaces. Studia Mathematica, Tome 113 (1995) pp. 261-273. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p261bwm/

[00000] [1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1975.

[00001] [2] F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math. 18, Part 2, Amer. Math. Soc., Providence, 1976. | Zbl 0327.47022

[00002] [3] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Boston, 1990. | Zbl 0712.47043

[00003] [4] K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374. | Zbl 0288.47047

[00004] [5] J. Gatica and W. A. Kirk, Fixed point theorems for Lipschitzian pseudo-contractive mappings, Proc. Amer. Math. Soc. 36 (1972), 111-115. | Zbl 0254.47076

[00005] [6] J. Gatica and W. A. Kirk, Fixed point theorems for contraction mappings with applications to nonexpansive and pseudo-contractive mappings, Rocky Mountain J. Math. 4 (1974), 69-79. | Zbl 0277.47034

[00006] [7] D. R. Kaplan and A. G. Kartsatos, Ranges of sums and the control of nonlinear evolutions with pre-assigned responses, J. Optim. Theory Appl. 81 (1994), 121-141. | Zbl 0804.93003

[00007] [8] A. G. Kartsatos, Some mapping theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 82 (1981), 169-183. | Zbl 0466.47035

[00008] [9] A. G. Kartsatos, Zeros of demicontinuous accretive operators in reflexive Banach spaces, J. Integral Equations 8 (1985), 175-184. | Zbl 0584.47054

[00009] [10] A. G. Kartsatos, On the solvability of abstract operator equations involving compact perturbations of m-accretive operators, Nonlinear Anal. 11 (1987), 997-1004. | Zbl 0638.47052

[00010] [11] A. G. Kartsatos, On compact perturbations and compact resolvents of nonlinear m-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 119 (1993), 1189-1199. | Zbl 0809.47047

[00011] [12] A. G. Kartsatos, Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces, in: Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, 1992, Walter de Gruyter, New York, to appear. | Zbl 0849.47027

[00012] [13] A. G. Kartsatos, On the construction of methods of lines for functional evolutions in general Banach spaces, Nonlinear Anal., to appear. | Zbl 0864.47029

[00013] [14] A. G. Kartsatos, Existence of zeros and asymptotic behaviour of resolvents of maximal monotone operators in reflexive Banach spaces, to appear. | Zbl 0902.47052

[00014] [15] A. G. Kartsatos and R. D. Mabry, Controlling the space with pre-assigned responses, J. Optim. Appl. Theory 54 (1987), 517-540. | Zbl 0596.49026

[00015] [16] W. A. Kirk, Fixed point theorems for nonexpansive mappings satisfying certain boundary conditions, Proc. Amer. Math. Soc. 50 (1975), 143-149. | Zbl 0322.47036

[00016] [17] W. A. Kirk and R. Schöneberg, Some results on pseudo-contractive mappings, Pacific J. Math. 71 (1977), 89-100. | Zbl 0362.47023

[00017] [18] W. A. Kirk and R. Schöneberg, Zeros of m-accretive operators in Banach spaces, Israel J. Math. 35 (1980), 1-8. | Zbl 0435.47055

[00018] [19] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford, 1981. | Zbl 0456.34002

[00019] [20] C. Morales, Nonlinear equations involving m-accretive operators, J. Math. Anal. Appl. 97 (1983), 329-336. | Zbl 0542.47042

[00020] [21] C. Morales, Existence theorems for demicontinuous accretive operators in Banach spaces, Houston J. Math. 10 (1984), 535-543. | Zbl 0579.47058

[00021] [22] C. Morales, Zeros for accretive operators satisfying certain boundary conditions, J. Math. Anal. Appl. 105 (1985), 167-175. | Zbl 0579.47057

[00022] [23] M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497-511. | Zbl 0043.17801

[00023] [24] S. Reich and R. Torrejón, Zeros of accretive operators, Comment. Math. Univ. Carolin. 21 (1980), 619-625. | Zbl 0444.47043

[00024] [25] R. Torrejón, Some remarks on nonlinear functional equations, in: Contemp. Math. 18, Amer. Math. Soc., 1983, 217-246. | Zbl 0518.47042