Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized and unified
@article{bwmeta1.element.bwnjournal-article-smv114i3p227bwm, author = {Ryotaro Sato}, title = {Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {227-236}, zbl = {0835.47006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p227bwm} }
Sato, Ryotaro. Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations. Studia Mathematica, Tome 113 (1995) pp. 227-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i3p227bwm/
[00000] [1] I. Assani, Quelques résultats sur les opérateurs positifs à moyennes bornées dans , Ann. Sci. Univ. Clermont-Ferrand II Probab. Appl. 3 (1985), 65-72. | Zbl 0558.60033
[00001] [2] I. Assani and J. Woś, An equivalent measure for some nonsingular transformations and application, Studia Math. 97 (1990), 1-12. | Zbl 0718.28006
[00002] [3] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1958. | Zbl 0084.10402
[00003] [4] S. Gładysz, Ergodische Funktionale und individueller ergodischer Satz, Studia Math. 19 (1960), 177-185. | Zbl 0097.11002
[00004] [5] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 177-185.
[00005] [6] Y. Ito, Uniform integrability and the pointwise ergodic theorem, Proc. Amer. Math. Soc. 16 (1965), 222-227. | Zbl 0135.36204
[00006] [7] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
[00007] [8] P. Ortega Salvador, Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for functions in Lorentz spaces, Tôhoku Math. J. 45 (1993), 437-446. | Zbl 0802.28011
[00008] [9] H. L. Royden, Real Analysis, Macmillan, New York, 1988. | Zbl 0704.26006
[00009] [10] C. Ryll-Nardzewski, On the ergodic theorems. I. (Generalized ergodic theorems), Studia Math. 12 (1951), 65-73.
[00010] [11] R. Sato, Pointwise ergodic theorems for functions in Lorentz spaces with p≠ ∞, Studia Math. 109 (1994), 209-216. | Zbl 0822.47011