The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.
@article{bwmeta1.element.bwnjournal-article-smv114i2p181bwm, author = {Piotr Biler}, title = {The Cauchy problem and self-similar solutions for a nonlinear parabolic equation}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {181-205}, zbl = {0829.35044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i2p181bwm} }
Biler, Piotr. The Cauchy problem and self-similar solutions for a nonlinear parabolic equation. Studia Mathematica, Tome 113 (1995) pp. 181-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i2p181bwm/
[00000] [1] P. Baras et M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Appl. Anal. 18 (1984), 111-149. | Zbl 0582.35060
[00001] [2] P. Baras et M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185-212. | Zbl 0599.35073
[00002] [3] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539 (erratum: ibid. 112 (1993), 447).
[00003] [4] P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III, Colloq. Math. 68 (1995), 229-239. | Zbl 0836.35076
[00004] [5] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, ibid. 67 (1994), 297-308. | Zbl 0832.35015
[00005] [6] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. | Zbl 0817.35041
[00006] [7] G. Bourdaud, Réalisations des espaces de Besov homogènes, Ark. Mat. 26 (1988), 41-54. | Zbl 0661.46026
[00007] [8] M. Cannone, Ondelettes, paraproduits et Navier-Stokes, thèse de doctorat de l'Université Paris-IX, juin 1994.
[00008] [9] M. Cannone et Y. Meyer, Existence et unicité globale pour les équations de Navier-Stokes dans , prépublication, CEREMADE, Université Paris-Dauphine, 1994.
[00009] [10] M. Cannone, Y. Meyer et F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, exposé VIII, Séminaire "Équations aux dérivées partielles", Centre de Mathématiques, École Polytechnique, 18 janvier 1994.
[00010] [11] M. Cannone, Y. Meyer et F. Planchon, Solutions auto-similaires de l'équation de Navier-Stokes, prépublication, CEREMADE, Université Paris-Dauphine, 1994.
[00011] [12] P. Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993), 219-248. | Zbl 0795.35080
[00012] [13] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, R.I., 1991. | Zbl 0757.42006
[00013] [14] Y. Giga and T. Miyakawa, Navier-Stokes flow in with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), 577-618. | Zbl 0681.35072
[00014] [15] J. Ginibre and G. Velo, Scattering in the energy space for a class of nonlinear wave equations, Comm. Math. Phys. 123 (1989), 535-573. | Zbl 0698.35112
[00015] [16] T. Kato, Strong solutions of the Navier-Stokes equations in , with applications to weak solutions, Math. Z. 187 (1984), 471-480. | Zbl 0545.35073
[00016] [17] T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat. (N.S.) 22 (1992), 127-155. | Zbl 0781.35052
[00017] [18] T. Kobayashi and T. Muramatu, Abstract Besov spaces approach to the non-stationary Navier-Stokes equations, Math. Methods Appl. Sci. 15 (1992), 599-620. | Zbl 0771.35046
[00018] [19] H. Kozono and M. Yamazaki, Semilinear heat equation and the Navier-Stokes equation with distributions as initial data, C. R. Acad. Sci. Paris 317 (1993), 1127-1132. | Zbl 0793.35070
[00019] [20] P.-G. Lemarié, Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières, Ann. Inst. Fourier (Grenoble) 35 (4) (1985), 175-187. | Zbl 0555.47032
[00020] [21] T. Miyakawa, On Morrey spaces of measures: basic properties and potential estimates, Hiroshima Math. J. 20 (1990), 213-222. | Zbl 0728.31007
[00021] [22] M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), 1407-1456. | Zbl 0771.35047
[00022] [23] H. Triebel, Theory of Function Spaces, Monographs Math. 78, Birkhäuser, 1983.
[00023] [24] H. Triebel, Theory of Function Spaces II, Monographs Math. 84, Birkhäuser, 1992.
[00024] [25] F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in , Indiana Univ. Math. J. 29 (1980), 79-102. | Zbl 0443.35034