We use the work of J. Bourgain to show that some uniform algebras of analytic functions have certain Banach space properties. If X is a Banach space, we say X is strongif X and X* have the Dunford-Pettis property, X has the Pełczyński property, and X* is weakly sequentially complete. Bourgain has shown that the ball-algebras and the polydisk-algebras are strong Banach spaces. Using Bourgain’s methods, Cima and Timoney have shown that if K is a compact planar set and A is R(K) or A(K), then A and A* have the Dunford-Pettis property. Prior to the work of Bourgain, it was shown independently by Wojtaszczyk and Delbaen that R(K) and A(K) have the Pełczyński property for special classes of sets K. We show that if A is R(K) or A(K), where K is arbitrary, or if A is A(D) where D is a strictly pseudoconvex domain with smooth boundary in , then A is a strong Banach space. More generally, if A is a uniform algebra on a compact space K, we say A is strongly tight if the Hankel-type operator defined by f → fg + A is compact for every g ∈ C(K). Cole and Gamelin have shown that R(K) and A(K) are strongly tight when K is arbitrary, and their ideas can be used to show A(D) is strongly tight for the domains D considered above. We show strongly tight uniform algebras are strong Banach spaces.
@article{bwmeta1.element.bwnjournal-article-smv114i2p159bwm, author = {Scott Saccone}, title = {Banach space properties of strongly tight uniform algebras}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {159-180}, zbl = {0826.46019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i2p159bwm} }
Saccone, Scott. Banach space properties of strongly tight uniform algebras. Studia Mathematica, Tome 113 (1995) pp. 159-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i2p159bwm/
[00000] [1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. | Zbl 0084.09805
[00001] [2] J. Bourgain, On weak completeness of the dual of spaces of analytic and smooth functions, Bull. Soc. Math. Belg. Sér. B 35 (1) (1983), 111-118. | Zbl 0521.46016
[00002] [3] J. Bourgain, The Dunford-Pettis property for the ball-algebras, the polydisc algebras and the Sobolev spaces, Studia Math. 77 (3) (1984), 245-253. | Zbl 0576.46040
[00003] [4] J. Bourgain, New Banach space properties of the disc algebra and , Acta Math. 152 (1984), 1-48.
[00004] [5] J. Bourgain and F. Delbaen, A class of special spaces, ibid. 145 (1980), 155-176.
[00005] [6] J. Chaumat, Une généralisation d'un théorème de Dunford-Pettis, Université de Paris XI, U.E.R. Mathématique, preprint no. 85, 1974.
[00006] [7] J. A. Cima and R. M. Timoney, The Dunford-Pettis property for certain planar uniform algebras, Michigan Math. J. 34 (1987), 99-104. | Zbl 0617.46058
[00007] [8] B. J. Cole and T. W. Gamelin, Tight uniform algebras and algebras of analytic functions, J. Funct. Anal. 46 (1982), 158-220. | Zbl 0569.46034
[00008] [9] B. J. Cole and R. M. Range, A-measures on complex manifolds and some applications, ibid. 11 (1972), 393-400. | Zbl 0245.32008
[00009] [10] J. B. Conway, The Theory of Subnormal Operators, Amer. Math. Soc., Providence, R.I., 1991. | Zbl 0743.47012
[00010] [11] A. M. Davie, Bounded limits of analytic functions, Proc. Amer. Math. Soc. 32 (1972), 127-133. | Zbl 0234.30040
[00011] [12] F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977), 284-294. | Zbl 0361.46048
[00012] [13] F. Delbaen, The Pełczyński property for some uniform algebras, Studia Math. 64 (1979), 117-125. | Zbl 0405.46041
[00013] [14] J. Diestel, A survey of results related to the Dunford-Pettis property, in: Proc. Conf. on Integration, Topology, and Geometry in Linear Spaces, W. H. Graves (ed.), Amer. Math. Soc., Providence, R.I., 1980, 15-60. | Zbl 0571.46013
[00014] [15] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
[00015] [16] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
[00016] [17] T. W. Gamelin, Uniform algebras on plane sets, in: Approximation Theory, Academic Press, New York, 1973, 100-149.
[00017] [18] T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1984.
[00018] [19] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173. | Zbl 0050.10902
[00019] [20] G. M. Henkin, The Banach spaces of analytic functions in a sphere and in a bicylinder are not isomorphic, Funktsional. Anal. i Prilozhen. 2 (4) (1968), 82-91 (in Russian); English transl.: Functional Anal. Appl. 2 (4) (1968), 334-341. | Zbl 0181.13401
[00020] [21] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb. 78 (120) (4) (1969), 611-632 (in Russian); English transl.: Math. USSR-Sb. 7 (1969), 597-616.
[00021] [22] N. Kerzman, Hölder and estimates for solutions of in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379. | Zbl 0205.38702
[00022] [23] S. V. Kisliakov, On the conditions of Dunford-Pettis, Pełczyński, and Grothendieck, Dokl. Akad. Nauk SSSR 225 (1975), 1252-1255 (in Russian); English transl.: Soviet Math. Dokl. 16 (1975), 1616-1621.
[00023] [24] S. Li and B. Russo, The Dunford-Pettis property for some function algebras in several complex variables, preprint, Univ. of California at Irvine, 1992.
[00024] [25] J. D. McNeal, On sharp Hölder estimates for solutions of the ∂̅-equations, in: Proc. Sympos. Pure Math. 52, Part 3, Amer. Math. Soc., Providence, R.I., 1991, 277-285. | Zbl 0747.32010
[00025] [26] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641-648. | Zbl 0107.32504
[00026] [27] A. Pełczyński, Banach Spaces of Analytic Functions and Absolutely Summing Operators, CBMS Regional Conf. Ser. in Math. 30, Amer. Math. Soc., Providence, R.I., 1977.
[00027] [28] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, New York, 1986. | Zbl 0591.32002
[00028] [29] P. Wojtaszczyk, On weakly compact operators from some uniform algebras, Studia Math. 64 (1979), 105-116. | Zbl 0405.46040
[00029] [30] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, New York, 1991. | Zbl 0724.46012