We present a general method for the extension of results about linear prediction for q-variate weakly stationary processes on a separable locally compact abelian group (whose dual is a Polish space) with known values of the processes on a separable subset to results for weakly stationary processes on with observed values on . In particular, the method is applied to obtain new proofs of some well-known results of Ze Pei Jiang.
@article{bwmeta1.element.bwnjournal-article-smv114i2p147bwm, author = {J. Friedrich and L. Klotz and M. Riedel}, title = {On reduction of two-parameter prediction problems}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {147-158}, zbl = {0822.60038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i2p147bwm} }
Friedrich, J.; Klotz, L.; Riedel, M. On reduction of two-parameter prediction problems. Studia Mathematica, Tome 113 (1995) pp. 147-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i2p147bwm/
[00000] [1] R. Cheng, A strong mixing condition for second-order stationary random fields, Studia Math. 101 (1992), 139-153. | Zbl 0809.60061
[00001] [2] J. Dixmier, Von Neumann Algebras, North-Holland, Amsterdam, 1981.
[00002] [3] P. Hennequin and A. Tortrat, Probability Theory and its Applications, Nauka, Moscow, 1974 (in Russian).
[00003] [4] Z. P. Jiang, Extrapolation theory of a homogeneous random field with continuous parameters, Teor. Veroyatnost. i Primenen. 2 (1) (1957), 60-91 (in Russian). | Zbl 0082.34302
[00004] [5] Z. P. Jiang, On linear extrapolation of a discrete homogeneous random field, Dokl. Akad. Nauk SSSR 112 (1957), 207-210 (in Russian). | Zbl 0082.34301
[00005] [6] H. Korezlioglu and Ph. Loubaton, Prediction and spectral decomposition of wide sense stationary processes on , in: F. Droesbeke (ed.), Spatial Processes and Spatial Time Series Analysis, Proceedings of the 6th Franco-Belgian Meeting of Statisticians, November 1985, Bruxelles, 1985, 127-164.
[00006] [7] A. Makagon and H. Salehi, Stationary fields with positive angle, J. Multivariate Anal. 22 (1987), 106-125. | Zbl 0622.60051
[00007] [8] A. Makagon and A. Weron, q-variate minimal stationary processes, Studia Math. 59 (1976), 41-52.
[00008] [9] A. Makagon and A. Weron, Wold-Cramér concordance theorems for interpolation of q-variate stationary processes over locally compact abelian groups, J. Multivariate Anal. 6 (1976), 123-137. | Zbl 0332.60026
[00009] [10] M. Rosenberg, The square-integrability of matrix-valued functions with respect to a non-negative Hermitian measure, Duke Math. J. 31 (1964), 291-298. | Zbl 0129.08902
[00010] [11] Yu. A. Rozanov, Stationary Stochastic Processes, Fizmatgiz, Moscow, 1963 (in Russian).