This paper develops some Littlewood-Paley theory for Hermite expansions. The main result is that certain analogues of Triebel-Lizorkin spaces are well-defined in the context of Hermite expansions.
@article{bwmeta1.element.bwnjournal-article-smv114i1p87bwm, author = {Jay Epperson}, title = {Triebel-Lizorkin spaces for Hermite expansions}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {87-103}, zbl = {0828.42017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i1p87bwm} }
Epperson, Jay. Triebel-Lizorkin spaces for Hermite expansions. Studia Mathematica, Tome 113 (1995) pp. 87-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i1p87bwm/
[00000] [1] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1972), 107-115. | Zbl 0222.26019
[00001] [2] B. Muckenhoupt, Mean convergence of Hermite and Laguerre series II, Trans. Amer. Math. Soc. 147 (1970), 433-460.
[00002] [3] J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130. | Zbl 0302.46021
[00003] [4] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton Univ. Press, 1993.
[00004] [5] H. Triebel, Theory of Function Spaces, Monographs Math. 78, Birkhäuser, Basel, 1983.
[00005] [6] H. Triebel, Theory of Function Spaces II, Monographs Math. 84, Birkhäuser, Basel, 1992.