Relatively perfect σ-algebras for flows
Blanchard, F. ; Kamiński, B.
Studia Mathematica, Tome 113 (1995), p. 71-85 / Harvested from The Polish Digital Mathematics Library

We show that for every ergodic flow, given any factor σ-algebra ℱ, there exists a σ-algebra which is relatively perfect with respect to ℱ. Using this result and Ornstein's isomorphism theorem for flows, we give a functorial definition of the entropy of flows.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216180
@article{bwmeta1.element.bwnjournal-article-smv114i1p71bwm,
     author = {F. Blanchard and B. Kami\'nski},
     title = {Relatively perfect $\sigma$-algebras for flows},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {71-85},
     zbl = {0836.28009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i1p71bwm}
}
Blanchard, F.; Kamiński, B. Relatively perfect σ-algebras for flows. Studia Mathematica, Tome 113 (1995) pp. 71-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i1p71bwm/

[00000] [A1] L. M. Abramov, The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR 128 (1959), 647-650 (in Russian). | Zbl 0094.10001

[00001] [A2] L. M. Abramov, On the entropy of a flow, ibid., 873-875 (in Russian).

[00002] [AK] W. Ambrose and S. Kakutani, Structure and continuity of measurable flows, Duke Math. J. 9 (1942), 25-42. | Zbl 0063.00065

[00003] [B1] F. Blanchard, Partitions extrémales des flots d'entropie infinie, Z. Wahrsch. Verw. Gebiete 36 (1976), 129-136. | Zbl 0319.28012

[00004] [B2] F. Blanchard, K-flots et théorème de renouvellement, ibid., 345-358. | Zbl 0328.60036

[00005] [CFS] I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, Ergodic Theory, Springer, 1982.

[00006] [G1] B. M. Gurevič, Some existence conditions for K-decompositions for special flows, Trans. Moscow Math. Soc. 17 (1967), 99-126.

[00007] [G2] B. M. Gurevič, Perfect partitions for ergodic flows, Functional Anal. Appl. 11 (1977), 20-23.

[00008] [K1] B. Kamiński, The theory of invariant partitions for d-actions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 349-362.

[00009] [K2] B. Kamiński, An axiomatic definition of the entropy of a d-action on a Lebesgue space, Studia Math. 46 (1990), 135-144.

[00010] [O1] D. S. Ornstein, Imbedding Bernoulli shifts in flows, in: Contributions to Ergodic Theory and Probability (Columbus, 1970), Lecture Notes in Math. 160, Springer, 1970, 178-218.

[00011] [O2] D. S. Ornstein, The isomorphism theorem for Bernoulli flows, Adv. in Math. 10 (1973), 124-142. | Zbl 0265.28011

[00012] [Ro] V. A. Rokhlin, An axiomatic definition of the entropy of a transformation with invariant measure, Dokl. Akad. Nauk SSSR 148 (1963), 779-781 (in Russian).

[00013] [Ru] D. Rudolph, A two-step coding for ergodic flows, Math. Z. 150 (1976), 201-220. | Zbl 0325.28019