Martingale Hardy spaces and BMO spaces generated by an operator T are investigated. An atomic decomposition of the space is given if the operator T is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the spaces generated by an operator T are all equivalent. The sharp operator is also considered and it is verified that the norm of the sharp operator is equivalent to the norm. The interpolation spaces between the Hardy and BMO spaces are identified by the real method. Martingale inequalities between Hardy spaces generated by two different operators are considered. In particular, we obtain inequalities for the maximal function, for the q-variation and for the conditional q-variation. The duals of the Hardy spaces generated by these special operators are characterized.
@article{bwmeta1.element.bwnjournal-article-smv114i1p39bwm, author = {Ferenc Weisz}, title = {Martingale operators and Hardy spaces generated by them}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {39-70}, zbl = {0822.60043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i1p39bwm} }
Weisz, Ferenc. Martingale operators and Hardy spaces generated by them. Studia Mathematica, Tome 113 (1995) pp. 39-70. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i1p39bwm/
[00000] [1] N. Asmar and S. Montgomery-Smith, Littlewood-Paley theory on solenoids, Colloq. Math. 65 (1993), 69-82.
[00001] [2] N. L. Bassily and J. Mogyoródi, On the -spaces with general Young function, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 27 (1984), 215-227. | Zbl 0581.60036
[00002] [3] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Appl. Math. 129, Academic Press, New York, 1988. | Zbl 0647.46057
[00003] [4] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. | Zbl 0344.46071
[00004] [5] A. Bernard et B. Maisonneuve, Décomposition atomique de martingales de la classe , in: Séminaire de Probabilités XI, Lecture Notes in Math. 581, Springer, Berlin, 1977, 303-323. | Zbl 0384.60032
[00005] [6] O. Blasco, Interpolation between and , Studia Math. 92 (1989), 205-210.
[00006] [7] O. Blasco and Q. Xu, Interpolation between vector-valued Hardy spaces, J. Funct. Anal. 102 (1991), 331-359. | Zbl 0759.46066
[00007] [8] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42. | Zbl 0301.60035
[00008] [9] D. L. Burkholder, B. J. Davis and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, in: Proc. Sixth Berkeley Sympos. Math. Statist. and Probab., Univ. of California Press, 1972, 223-240. | Zbl 0253.60056
[00009] [10] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304. | Zbl 0223.60021
[00010] [11] L. Chevalier, Démonstration atomique des inégalités de Burkholder-Davis-Gundy, Ann. Sci. Univ. Clermont-Ferrand 67 (1979), 19-24. | Zbl 0406.60039
[00011] [12] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[00012] [13] B. J. Davis, On the integrability of the martingale square function, Israel J. Math. 8 (1970), 187-190. | Zbl 0211.21902
[00013] [14] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. | Zbl 0285.41006
[00014] [15] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-194. | Zbl 0257.46078
[00015] [16] A. M. Garsia, Martingale Inequalities. Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973.
[00016] [17] R. Hanks, Interpolation by the real method between BMO, and (0< α< ∞), Indiana Univ. Math. J. 26 (1977), 679-689.
[00017] [18] C. Herz, Bounded mean oscillation and regulated martingales, Trans. Amer. Math. Soc. 193 (1974), 199-215. | Zbl 0321.60041
[00018] [19] C. Herz, -spaces of martingales, 0
| Zbl 0269.60040
[00019] [20] P. Hitczenko, Upper bounds for the -norms of martingales, Probab. Theory Related Fields 86 (1990), 225-238. | Zbl 0677.60017
[00020] [21] S. Janson and P. Jones, Interpolation between spaces: the complex method, J. Funct. Anal. 48 (1982), 58-80. | Zbl 0507.46047
[00021] [22] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. | Zbl 0102.04302
[00022] [23] D. Lepingle, La variation d'ordre p des semi-martingales, Z. Wahrsch. Verw. Gebiete 36 (1976), 295-316. | Zbl 0325.60047
[00023] [24] D. Lepingle, Quelques inégalités concernant les martingales, Studia Math. 59 (1976), 63-83. | Zbl 0413.60046
[00024] [25] M. Milman, On interpolation of martingale spaces, Indiana Univ. Math. J. 30 (1981), 313-318. | Zbl 0501.46066
[00025] [26] J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971.
[00026] [27] G. Pisier and Q. Xu, The strong p-variation of martingales and orthogonal series, Probab. Theory Related Fields 77 (1988), 497-514. | Zbl 0632.60004
[00027] [28] M. Pratelli, Sur certains espaces de martingales localement de carré intégrable, in: Séminaire de Probabilités X, Lecture Notes in Math. 511, Springer, Berlin, 1976, 401-413.
[00028] [29] N. M. Rivière and Y. Sagher, Interpolation between and the real method, J. Funct. Anal. 14 (1973), 401-409.
[00029] [30] H. P. Rosenthal, On the subspaces of spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303. | Zbl 0213.19303
[00030] [31] F. Schipp, The dual space of martingale VMO space, in: Proc. Third Pannonian Sympos. Math. Statist., Visegrád, 1982, 305-315.
[00031] [32] E. M. Stein, Topics in Harmonic Analysis, Princeton Univ. Press, 1970. | Zbl 0193.10502
[00032] [33] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544. | Zbl 0429.46016
[00033] [34] F. Weisz, Interpolation between martingale Hardy and BMO spaces, the real method, Bull. Sci. Math. 116 (1992), 145-158. | Zbl 0776.46018
[00034] [35] F. Weisz, Martingale Hardy spaces for 0
| Zbl 0687.60046
[00035] [36] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. | Zbl 0796.60049
[00036] [37] T. H. Wolff, A note on interpolation spaces, in: Lecture Notes in Math. 908, Springer, Berlin, 1982, 199-204.
[00037] [38] K. Yosida, Functional Analysis, Springer, Berlin, 1980.